Suppose we take any positive integer \(n \gt 1\)
- if prime, double it and add 1: \(n \rightarrow 2n+1\)
- if composite, determine its number of divisors \(d\)
- if \( n \pmod d \equiv 0\) then \(n \rightarrow \dfrac{n}{d} \)
- if \( n \pmod d \not\equiv 0 \) then \(n \rightarrow n \times d\)
Keep repeating this process until a loop is reached or call a stop after a fixed number of iterations.
Let's use 28059 as an example. Applying the above rules leads to the following sequence:
28059, 224472, 7183104, 517183488, 2693664, 37412, 448944, 17957760, 140295, 2244720, 28059
We end up right where we started. Here the details with number of divisors shown (permalink):
28059 --> 8224472 --> 327183104 --> 72517183488 --> 1922693664 --> 7237412 --> 12448944 --> 4017957760 --> 128140295 --> 162244720 --> 8028059 --> 8
As before we are interested in record lengths and my algorithm was not up to the job of determing these so I had to call on Gemini for help. It came up with the following record breaking numbers in the range up to one million (permalink):
2, 3, 6, 11, 22, 44, 50, 99, 125, 206, 350, 463, 487, 974, 1375, 1573, 1625, 5200, 14157, 16879, 18747, 39325, 89237, 151911, 563553, 803133
Here are the details of the lengths:
Number | Length | Status
-----------------------------------
2 | 5 | New Record!
3 | 8 | New Record!
6 | 10 | New Record!
11 | 21 | New Record!
22 | 23 | New Record!
44 | 25 | New Record!
50 | 28 | New Record!
99 | 32 | New Record!
125 | 33 | New Record!
206 | 34 | New Record!
350 | 37 | New Record!
463 | 44 | New Record!
487 | 46 | New Record!
974 | 48 | New Record!
1375 | 51 | New Record!
1573 | 52 | New Record!
1625 | 60 | New Record!
5200 | 62 | New Record!
14157 | 63 | New Record!
16879 | 64 | New Record!
18747 | 67 | New Record!
39325 | 70 | New Record!
89237 | 71 | New Record!
151911 | 75 | New Record!
563553 | 77 | New Record!
803133 | 82 | New Record! Let's look at the sequence for the last number in the above list, 803133 (permalink):
803133, 4818798, 77100768, 1606266, 19275192, 616806144, 8566752, 356948, 2141688, 34267008, 1070844, 89237, 178475, 3212550, 346955400, 149884732800, 115651800, 321255, 11565180, 64251, 1156518, 69391080, 19984631040, 23130360, 5551286400, 6425100, 1040866200, 524596564800, 231303600, 514008, 7139, 42834, 1028016, 92521440, 257004, 13878216, 1998463104, 5204331, 218581902, 41967725184, 48573756, 10491931296, 16191252, 2914425360, 3469554, 249807888, 59953893120, 61680960, 20724802560, 15700608, 4019355648, 7850304, 35046, 1121472, 125604864, 356832, 3717, 44604, 2140992, 299738880, 555072, 6608, 132160, 2360, 37760, 1180, 14160, 354, 2832, 56640, 3171840, 19824, 792960, 6195, 99120, 1239, 9912, 317184, 22837248, 118944, 1652, 19824
Like the previous sequences using the number of factors, this sequence using the number of divisors is also \( \textbf{base independent}\).
No comments:
Post a Comment