- if prime, double it and add 1: \(n \rightarrow 2n+1\)
- if composite, determine its number of factors \(f\) counted with multiplicity
- if \( n \pmod f \equiv 0\) then \(n \rightarrow \dfrac{n}{f} \)
- if \( n \pmod f \not\equiv 0 \) then \(n \rightarrow n \times f\)
- \(28058 = 2 \times 14029\) and there are two factors
2 divides 28056 to give 14209 - \(14029\) is prime
multiplying by 2 and adding 1 we get 28059 - \(28059 = 3 \times 47 \times 199\) and there are three factors
3 divides 28059 to give 9353 - \(9353 = 47 \times 199\) and there are two factors but 2 doesn't divide 9353
multiplying by 2 gives 18706 - \(18706 = 2 \times 47 \times 199\) and there are three factors but 3 doesn't divide 18706
multiplying by 3 gives 56118 - \(56118 = 2 \times 3 \times 47 \times 199\) and there are four factors but 4 doesn't divide 56118
multiplying by 4 gives 224472 - \(224472 = 2^3 \times 3 \times 47 \times 199\) and there are six factors (with multiplicity)
6 divides 224472 to give 37412 - \(37412 = 2^2 \times 47 \times 199\) and there are four factors (with multiplicity)
4 divides 37412 to give 9353 - \(9353\) occurred earlier in the sequence and so we have a loop
![]() |
Figure 1 |
2 --> 113 --> 156 --> 168 --> 1813 --> 2019 --> 2438 --> 2557 --> 2776 --> 29304 --> 321024 --> 341579 --> 402401 --> 433584 --> 4910331 --> 5112119 --> 5312500 --> 6115379 --> 6424251 --> 6530689 --> 6648661 --> 6957122 --> 9266749 --> 105116603 --> 145155201 --> 146232801 --> 150465602 --> 151698403 --> 153931204 --> 155
The sequence for 931204 is as follows:
931204, 2793612, 698403, 1396806, 465602, 232801, 465603, 931206, 310402, 155201, 310403, 1241612, 7449672, 931209, 4656045, 27936270, 223490160, 2458391760, 204865980, 1843793820, 167617620, 16761762, 134094096, 1475035056, 122919588, 13657732, 95604124, 764832992, 69530272, 695302720, 8343632640, 556242176, 7231148288, 516510592, 6198127104, 92971906560, 5468935680, 341808480, 28484040, 256356360, 2819919960, 234993330, 26110370, 182772590, 1462180720, 132925520, 13292552, 1661569, 8307845, 49847070, 398776560, 4386542160, 365545180, 3289906620, 299082420, 29908242, 239265936, 2631925296, 219327108, 1973943972, 179449452, 1794494520, 149541210, 16615690, 2373670, 14242020, 113936160, 1253297760, 104441480, 939973320, 85452120, 8545212, 68361696, 751978656, 62664888, 563983992, 51271272, 512712720, 42726060, 4747340, 33231380, 265851040, 2924361440, 35092337280, 2339489152, 179960704, 2159528448, 32392926720, 550679754240, 30593319680, 458899795200, 26994105600, 1687131600, 140594300, 1265348700, 115031700, 11503170, 92025360, 1012278960, 84356580, 759209220, 69019020, 6901902, 55215216, 607367376, 50613948, 5623772, 803396, 4820376, 602547, 3012735, 18076410, 144611280, 13146480, 1314648, 164331, 821655, 4929930, 39439440, 433833840, 36152820, 4016980, 28118860, 224950880, 20450080, 2045008, 255626, 1278130, 7668780, 61350240, 674852640, 56237720, 506139480, 46012680, 4601268, 36810144, 404911584, 33742632, 303683688, 27607608, 276076080, 23006340, 2556260, 365180, 2191080, 273885, 54777, 219108, 36518, 146072, 876432, 109554, 547770, 91295, 365180
The range of values in this sequence is extreme, ranging from a minimum of 36,518 to a maximum of 550,679,754,240. Figure 2 shows the trajectory with a log scale being necessary for the \(y\) axis.
![]() |
Figure 2 |


No comments:
Post a Comment