My diurnal age today is \( \textbf{28047} \) and this number has the interesting property that it's part of a Fibonacci sequence with seed numbers of 3 and 9. This leads to the following sequence of numbers:
3, 9, 12, 21, 33, 54, 87, 141, 228, 369, 597, 966, 1563, 2529, 4092, 6621, 10713, 17334, 28047, ...
These initial numbers form part of OEIS A022379.
The thought occurred to me that given two seed digits between 0 and 9, there ought to be a limited set of numbers from 10 to let's say 40000 that are generated by two single digit seeds. I got Gemini to write a Python program (permalink) to investigate this and it turns out that there are 651 numbers with this property. Here they are:
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 120, 121, 123, 124, 125, 126, 128, 129, 131, 133, 134, 136, 137, 138, 139, 141, 142, 144, 146, 147, 149, 150, 152, 154, 155, 157, 159, 160, 162, 163, 165, 167, 168, 170, 173, 175, 176, 178, 180, 181, 183, 186, 188, 189, 191, 194, 196, 199, 201, 202, 204, 207, 209, 212, 215, 217, 220, 222, 223, 225, 228, 230, 233, 236, 238, 241, 243, 246, 249, 251, 254, 257, 259, 262, 264, 267, 270, 272, 275, 280, 283, 285, 288, 291, 293, 296, 301, 304, 306, 309, 314, 317, 322, 325, 327, 330, 335, 338, 343, 348, 351, 356, 359, 361, 364, 369, 372, 377, 382, 385, 390, 393, 398, 403, 406, 411, 416, 419, 424, 427, 432, 437, 440, 445, 453, 458, 461, 466, 471, 474, 479, 487, 492, 495, 500, 508, 513, 521, 526, 529, 534, 542, 547, 555, 563, 568, 576, 581, 584, 589, 597, 602, 610, 618, 623, 631, 636, 644, 652, 657, 665, 673, 678, 686, 691, 699, 707, 712, 720, 733, 741, 746, 754, 762, 767, 775, 788, 796, 801, 809, 822, 830, 843, 851, 856, 864, 877, 885, 898, 911, 919, 932, 940, 945, 953, 966, 974, 987, 1000, 1008, 1021, 1029, 1042, 1055, 1063, 1076, 1089, 1097, 1110, 1118, 1131, 1144, 1152, 1165, 1186, 1199, 1207, 1220, 1233, 1241, 1254, 1275, 1288, 1296, 1309, 1330, 1343, 1364, 1377, 1385, 1398, 1419, 1432, 1453, 1474, 1487, 1508, 1521, 1529, 1542, 1563, 1576, 1597, 1618, 1631, 1652, 1665, 1686, 1707, 1720, 1741, 1762, 1775, 1796, 1809, 1830, 1851, 1864, 1885, 1919, 1940, 1953, 1974, 1995, 2008, 2029, 2063, 2084, 2097, 2118, 2152, 2173, 2207, 2228, 2241, 2262, 2296, 2317, 2351, 2385, 2406, 2440, 2461, 2474, 2495, 2529, 2550, 2584, 2618, 2639, 2673, 2694, 2728, 2762, 2783, 2817, 2851, 2872, 2906, 2927, 2961, 2995, 3016, 3050, 3105, 3139, 3160, 3194, 3228, 3249, 3283, 3338, 3372, 3393, 3427, 3482, 3516, 3571, 3605, 3626, 3660, 3715, 3749, 3804, 3859, 3893, 3948, 3982, 4003, 4037, 4092, 4126, 4181, 4236, 4270, 4325, 4359, 4414, 4469, 4503, 4558, 4613, 4647, 4702, 4736, 4791, 4846, 4880, 4935, 5024, 5079, 5113, 5168, 5223, 5257, 5312, 5401, 5456, 5490, 5545, 5634, 5689, 5778, 5833, 5867, 5922, 6011, 6066, 6155, 6244, 6299, 6388, 6443, 6477, 6532, 6621, 6676, 6765, 6854, 6909, 6998, 7053, 7142, 7231, 7286, 7375, 7464, 7519, 7608, 7663, 7752, 7841, 7896, 7985, 8129, 8218, 8273, 8362, 8451, 8506, 8595, 8739, 8828, 8883, 8972, 9116, 9205, 9349, 9438, 9493, 9582, 9726, 9815, 9959, 10103, 10192, 10336, 10425, 10480, 10569, 10713, 10802, 10946, 11090, 11179, 11323, 11412, 11556, 11700, 11789, 11933, 12077, 12166, 12310, 12399, 12543, 12687, 12776, 12920, 13153, 13297, 13386, 13530, 13674, 13763, 13907, 14140, 14284, 14373, 14517, 14750, 14894, 15127, 15271, 15360, 15504, 15737, 15881, 16114, 16347, 16491, 16724, 16868, 16957, 17101, 17334, 17478, 17711, 17944, 18088, 18321, 18465, 18698, 18931, 19075, 19308, 19541, 19685, 19918, 20062, 20295, 20528, 20672, 20905, 21282, 21515, 21659, 21892, 22125, 22269, 22502, 22879, 23112, 23256, 23489, 23866, 24099, 24476, 24709, 24853, 25086, 25463, 25696, 26073, 26450, 26683, 27060, 27293, 27437, 27670, 28047, 28280, 28657, 29034, 29267, 29644, 29877, 30254, 30631, 30864, 31241, 31618, 31851, 32228, 32461, 32838, 33215, 33448, 33825, 34435, 34812, 35045, 35422, 35799, 36032, 36409, 37019, 37396, 37629, 38006, 38616, 38993, 39603, 39980
The following code (permalink) can be used to find the seeds of any number in this list. It's not impressive code I'm sure but it seems to do the job. Let's try with the last number in the previous list, 39980.
c=39980 L=[] b=round(c/((1+sqrt(5))/2)) L.append(c);L.append(b) a=0 while b>=a and c>b: a=c-b if a <b: c=b b=a L.append(a) L.reverse() if len(str(L[1]))==2: a=L[1]-L[0] b=L[0] print("Seed numbers for Fibonacci sequence are", a,"and",b) X=[a,b] L.remove(L[0]) print(X+L) else: print("Seed numbers for Fibonacci sequence are", L[0],"and",L[1]) print(L)
Seed numbers for Fibonacci sequence are 9 and 4
[9, 4, 13, 17, 30, 47, 77, 124, 201, 325, 526, 851, 1377, 2228, 3605, 5833, 9438, 15271, 24709, 39980]
- seeds of 1 and 3 \( \rightarrow\) 1, 3, 4, 7, 11, 18, 29, ...
- seeds of 2 and 1 \( \rightarrow \) 2, 1, 3, 4, 7, 11, 18, 29, ...
![]() |
Figure 1 |


No comments:
Post a Comment