A property of the number \( \textbf{28062}\) associated with my diurnal age today prompted me to look more closely at abundant numbers that are not Zumkeller. 28062 has the following properties:$$ \begin{align} 28062 &=2 \times 3^2 \times 1559\\ \text{ divisors } &\rightarrow 1, 2, 3, 6, 9, 18, 1559, 3118, 4677, 9354, 14031, 28062 \end{align}$$Normally, for abundant numbers, the set of divisors can be divided into two mutually exclusive sets whose elements sum to the same number. However, this simply can't be done with 28062.
Now up to 40000, there are 718 abundant numbers that are abundant but not Zumkeller. 146 of these have an odd sum of divisors and an even split is not possible. The other 572 have an even sum of divisors and thus have the potential for an even split but it proves impossible to find one. Here are the details:
There are 572 abundant numbers with an \( \textbf{even}\) sum of divisors. They are (up to 40000):
[738, 748, 774, 846, 954, 1062, 1098, 1206, 1278, 1314, 1422, 1494, 1602, 1746, 1818, 1854, 1926, 1962, 2034, 2286, 2358, 2466, 2502, 2682, 2718, 2826, 2934, 3006, 3114, 3222, 3258, 3438, 3474, 3492, 3546, 3582, 3636, 3708, 3798, 3852, 3924, 4014, 4068, 4086, 4122, 4194, 4302, 4338, 4518, 4572, 4626, 4716, 4734, 4842, 4878, 4932, 4986, 5004, 5058, 5094, 5274, 5364, 5436, 5526, 5598, 5634, 5652, 5706, 5868, 5958, 6012, 6066, 6228, 6246, 6282, 6354, 6444, 6462, 6516, 6606, 6714, 6822, 6876, 6894, 6948, 7002, 7092, 7146, 7164, 7218, 7362, 7542, 7544, 7578, 7596, 7758, 7794, 7902, 7974, 8028, 8082, 8172, 8226, 8244, 8298, 8334, 8388, 8406, 8604, 8622, 8676, 8766, 8838, 8982, 9036, 9054, 9162, 9252, 9378, 9414, 9468, 9684, 9738, 9756, 9846, 9972, 10026, 10116, 10134, 10184, 10188, 10242, 10278, 10386, 10548, 10566, 10674, 10782, 10818, 10926, 11034, 11052, 11106, 11142, 11196, 11268, 11358, 11412, 11538, 11574, 11646, 11754, 11862, 11898, 11916, 12114, 12132, 12186, 12294, 12438, 12492, 12564, 12618, 12708, 12762, 12924, 12942, 13086, 13194, 13212, 13302, 13374, 13428, 13518, 13626, 13644, 13698, 13788, 13842, 13914, 14004, 14166, 14184, 14292, 14328, 14346, 14436, 14562, 14598, 14724, 14778, 14814, 14886, 14922, 15084, 15102, 15156, 15192, 15354, 15426, 15462, 15516, 15534, 15588, 15786, 15804, 15858, 15894, 15948, 15966, 16056, 16164, 16326, 16344, 16398, 16452, 16488, 16542, 16596, 16668, 16722, 16776, 16812, 16866, 16938, 17046, 17154, 17208, 17244, 17352, 17406, 17478, 17532, 17586, 17676, 17694, 17838, 17946, 17964, 18072, 18108, 18162, 18234, 18324, 18342, 18378, 18504, 18558, 18594, 18702, 18756, 18828, 18882, 18918, 18936, 19098, 19134, 19242, 19368, 19476, 19512, 19566, 19638, 19674, 19692, 19746, 19854, 19944, 19962, 20052, 20106, 20214, 20232, 20268, 20322, 20376, 20484, 20556, 20718, 20754, 20772, 20934, 21078, 21096, 21132, 21258, 21348, 21366, 21474, 21564, 21618, 21636, 21834, 21852, 21906, 22014, 22068, 22104, 22122, 22158, 22212, 22266, 22284, 22300, 22392, 22482, 22536, 22662, 22700, 22716, 22824, 22900, 22986, 23022, 23076, 23094, 23148, 23202, 23238, 23292, 23300, 23346, 23418, 23454, 23508, 23526, 23724, 23742, 23778, 23796, 23832, 23886, 23900, 24100, 24228, 24264, 24372, 24498, 24588, 24606, 24714, 24858, 24876, 24984, 25100, 25128, 25182, 25236, 25362, 25416, 25524, 25614, 25686, 25700, 25722, 25794, 25848, 25884, 25902, 26046, 26118, 26154, 26172, 26262, 26300, 26388, 26424, 26478, 26604, 26658, 26694, 26748, 26766, 26802, 26856, 26874, 26900, 26982, 27036, 27100, 27198, 27252, 27288, 27396, 27414, 27558, 27576, 27684, 27700, 27774, 27828, 27882, 27954, 28008, 28062, 28100, 28206, 28278, 28300, 28332, 28422, 28494, 28584, 28692, 28746, 28818, 28872, 28926, 28962, 29034, 29124, 29142, 29178, 29196, 29286, 29300, 29448, 29466, 29556, 29628, 29772, 29826, 29844, 29934, 30006, 30042, 30168, 30204, 30312, 30474, 30546, 30582, 30700, 30708, 30762, 30852, 30924, 30978, 31014, 31032, 31068, 31100, 31176, 31194, 31300, 31338, 31446, 31554, 31572, 31608, 31662, 31700, 31716, 31788, 31896, 31932, 31986, 32094, 32166, 32202, 32328, 32418, 32598, 32652, 32796, 32814, 32904, 32958, 33084, 33100, 33192, 33246, 33336, 33444, 33498, 33606, 33624, 33678, 33700, 33714, 33732, 33786, 33822, 33876, 34002, 34092, 34218, 34308, 34326, 34434, 34488, 34700, 34758, 34794, 34812, 34900, 34956, 35064, 35082, 35118, 35172, 35300, 35352, 35388, 35514, 35622, 35676, 35766, 35874, 35892, 35900, 35928, 35946, 35982, 36054, 36198, 36216, 36306, 36324, 36468, 36486, 36522, 36648, 36684, 36700, 36702, 36756, 36954, 37116, 37134, 37188, 37242, 37300, 37404, 37458, 37494, 37512, 37566, 37602, 37656, 37764, 37782, 37836, 37900, 37998, 38034, 38196, 38268, 38300, 38322, 38358, 38466, 38484, 38538, 38574, 38754, 38898, 38900, 38952, 39132, 39222, 39276, 39348, 39384, 39492, 39654, 39700, 39708, 39726, 39834, 39924, 39978]
There are 146 abundant numbers with an \( \textbf{odd}\) sum of divisors. These are up to 40000:
[18, 36, 72, 100, 144, 162, 196, 200, 288, 324, 392, 400, 450, 576, 648, 784, 800, 882, 900, 968, 1152, 1296, 1352, 1458, 1568, 1600, 1764, 1800, 1936, 2178, 2304, 2450, 2500, 2592, 2704, 2916, 3042, 3136, 3200, 3528, 3600, 3872, 4050, 4356, 4608, 4624, 4900, 5000, 5184, 5202, 5408, 5776, 5832, 6050, 6084, 6272, 6400, 6498, 7056, 7200, 7744, 7938, 8100, 8450, 8464, 8712, 9216, 9248, 9522, 9604, 9800, 10000, 10368, 10404, 10816, 11025, 11250, 11552, 11664, 12100, 12168, 12544, 12800, 12996, 13122, 13456, 14112, 14400, 15138, 15376, 15488, 15876, 16200, 16900, 16928, 17298, 17424, 18432, 18496, 19044, 19208, 19600, 19602, 20000, 20736, 20808, 21632, 22050, 22500, 23104, 23328, 23716, 24200, 24336, 24642, 25088, 25600, 25992, 26244, 26912, 27378, 28224, 28800, 28900, 30258, 30276, 30752, 30976, 31752, 32400, 33124, 33282, 33800, 33856, 34596, 34848, 36100, 36450, 36864, 36992, 38088, 38416, 39200, 39204, 39762, 40000]
The total number is 718
Note how I've marked 11025 in red. This is because it is the only odd number with an odd number of divisors. We have:$$11025 = 3^2 \times 5^2 \times 7^2 = 105^2 \text{ with 27 divisors}$$The next such number is 99225 where:$$99225=3^4 \times 5^2 \times 7^2 = 315^2 \text{ with 243 divisors}$$
Let's not confuse oddness and evenness of the divisor sums with the oddness and evenness of the numbers themselves. The majority of Zumkeller numbers are even. To quote from an earlier blog of mine:
In the range up to 100,000 there are 24362 even Zumkeller numbers comprising 24.362% of the range. However, there are only 208 odd Zumkeller numbers in that range, comprising 0.208%.
No comments:
Post a Comment