Saturday, 20 September 2025

Seven Eleven Rules

I was struggling to find something that caught my fancy regarding the number associated with my diurnal age today: 27929. I thought I'd look at its reverse, 92972, and compare their factorisations. The results were:$$ \begin{align} 27929 =  11 \times 2539 \\ 92972 ==2^2 \times 11 \times 2113$$Clearly, the number and its reverse share a common prime factor of 11. I then realised that 27929 has a digit sum of 29 and the two digits, when added together, give 11. So I then decided to look for numbers with the following properties:

  • number is divisible by 11
  • its reverse is also divisible by 11
  • its sum of digits gives a number whose digits sum to 11
It turns out that there are only 30 numbers that satisfy these criteria in the range up to 40000. They are:

20999, 21989, 22979, 23969, 24959, 25949, 26939, 27929, 28919, 29909, 30899, 30998, 31889, 31988, 32879, 32978, 33869, 33968, 34859, 34958, 35849, 35948, 36839, 36938, 37829, 37928, 38819, 38918, 39809, 39908

The details are (permalink):

  number   factors              reverse   factors              digit sum   sum

  20999    11 * 23 * 83         99902     2 * 11 * 19 * 239    29          11
  21989    11 * 1999            98912     2^5 * 11 * 281       29          11
  22979    11 * 2089            97922     2 * 11 * 4451        29          11
  23969    11 * 2179            96932     2^2 * 11 * 2203      29          11
  24959    11 * 2269            95942     2 * 7^2 * 11 * 89    29          11
  25949    7 * 11 * 337         94952     2^3 * 11 * 13 * 83   29          11
  26939    11 * 31 * 79         93962     2 * 11 * 4271        29          11
  27929    11 * 2539            92972     2^2 * 11 * 2113      29          11
  28919    11^2 * 239           91982     2 * 11 * 37 * 113    29          11
  29909    11 * 2719            90992     2^4 * 11^2 * 47      29          11
  30899    11 * 53^2            99803     11 * 43 * 211        29          11
  30998    2 * 11 * 1409        89903     11^2 * 743           29          11
  31889    11 * 13 * 223        98813     11 * 13 * 691        29          11
  31988    2^2 * 11 * 727       88913     11 * 59 * 137        29          11
  32879    7^2 * 11 * 61        97823     11 * 8893            29          11
  32978    2 * 11 * 1499        87923     11 * 7993            29          11
  33869    11 * 3079            96833     11 * 8803            29          11
  33968    2^4 * 11 * 193       86933     7 * 11 * 1129        29          11
  34859    11 * 3169            95843     11 * 8713            29          11
  34958    2 * 7 * 11 * 227     85943     11 * 13 * 601        29          11
  35849    11 * 3259            94853     11 * 8623            29          11
  35948    2^2 * 11 * 19 * 43   84953     11 * 7723            29          11
  36839    11 * 17 * 197        93863     7 * 11 * 23 * 53     29          11
  36938    2 * 11 * 23 * 73     83963     11 * 17 * 449        29          11
  37829    11 * 19 * 181        92873     11 * 8443            29          11
  37928    2^3 * 11 * 431       82973     11 * 19 * 397        29          11
  38819    11 * 3529            91883     11 * 8353            29          11
  38918    2 * 11 * 29 * 61     81983     11 * 29 * 257        29          11
  39809    7 * 11^2 * 47        90893     11 * 8263            29          11
  39908    2^2 * 11 * 907       80993     11 * 37 * 199        29          11


The algorithm can be modified to search for prime numbers other than 11. For example, there are 80 numbers in the range up to 40000 that satisfy these criteria:
  • number is divisible by 7
  • its reverse is also divisible by 7
  • its sum of digits gives a number whose digits sum to 7
These numbers are (permalink):

259, 952, 1078, 1708, 2527, 2779, 3346, 3598, 4165, 5614, 5866, 6433, 6685, 7252, 8071, 8701, 8953, 9079, 9709, 9772, 10087, 10717, 10969, 11536, 11788, 12103, 12355, 13174, 13804, 14623, 14875, 15442, 15694, 17017, 17269, 17962, 18088, 18718, 19537, 19789, 20545, 20797, 21364, 22183, 22813, 23884, 24451, 25207, 25459, 26026, 26278, 26908, 26971, 27097, 27727, 27979, 28546, 28798, 29113, 29365, 30121, 30373, 31129, 31192, 31822, 32641, 32893, 33649, 34216, 34468, 35035, 35287, 35917, 36736, 36988, 37303, 37555, 38122, 38374, 39823

The details are (permalink):

  number   factors             reverse   factors                digit sum   sum

  259      7 * 37              952       2^3 * 7 * 17           16          7
  952      2^3 * 7 * 17        259       7 * 37                 16          7
  1078     2 * 7^2 * 11        8701      7 * 11 * 113           16          7
  1708     2^2 * 7 * 61        8071      7 * 1153               16          7
  2527     7 * 19^2            7252      2^2 * 7^2 * 37         16          7
  2779     7 * 397             9772      2^2 * 7 * 349          25          7
  3346     2 * 7 * 239         6433      7 * 919                16          7
  3598     2 * 7 * 257         8953      7 * 1279               25          7
  4165     5 * 7^2 * 17        5614      2 * 7 * 401            16          7
  5614     2 * 7 * 401         4165      5 * 7^2 * 17           16          7
  5866     2 * 7 * 419         6685      5 * 7 * 191            25          7
  6433     7 * 919             3346      2 * 7 * 239            16          7
  6685     5 * 7 * 191         5866      2 * 7 * 419            25          7
  7252     2^2 * 7^2 * 37      2527      7 * 19^2               16          7
  8071     7 * 1153            1708      2^2 * 7 * 61           16          7
  8701     7 * 11 * 113        1078      2 * 7^2 * 11           16          7
  8953     7 * 1279            3598      2 * 7 * 257            25          7
  9079     7 * 1297            9709      7 * 19 * 73            25          7
  9709     7 * 19 * 73         9079      7 * 1297               25          7
  9772     2^2 * 7 * 349       2779      7 * 397                25          7
  10087    7 * 11 * 131        78001     7 * 11 * 1013          16          7
  10717    7 * 1531            71701     7 * 10243              16          7
  10969    7 * 1567            96901     7 * 109 * 127          25          7
  11536    2^4 * 7 * 103       63511     7 * 43 * 211           16          7
  11788    2^2 * 7 * 421       88711     7 * 19 * 23 * 29       25          7
  12103    7^2 * 13 * 19       30121     7 * 13 * 331           7           7
  12355    5 * 7 * 353         55321     7^2 * 1129             16          7
  13174    2 * 7 * 941         47131     7 * 6733               16          7
  13804    2^2 * 7 * 17 * 29   40831     7 * 19 * 307           16          7
  14623    7 * 2089            32641     7 * 4663               16          7
  14875    5^3 * 7 * 17        57841     7 * 8263               25          7
  15442    2 * 7 * 1103        24451     7^2 * 499              16          7
  15694    2 * 7 * 19 * 59     49651     7 * 41 * 173           25          7
  17017    7 * 11 * 13 * 17    71071     7 * 11 * 13 * 71       16          7
  17269    7 * 2467            96271     7 * 17 * 809           25          7
  17962    2 * 7 * 1283        26971     7 * 3853               25          7
  18088    2^3 * 7 * 17 * 19   88081     7 * 12583              25          7
  18718    2 * 7^2 * 191       81781     7^2 * 1669             25          7
  19537    7 * 2791            73591     7 * 10513              25          7
  19789    7 * 11 * 257        98791     7 * 11 * 1283          34          7
  20545    5 * 7 * 587         54502     2 * 7 * 17 * 229       16          7
  20797    7 * 2971            79702     2 * 7 * 5693           25          7
  21364    2^2 * 7^2 * 109     46312     2^3 * 7 * 827          16          7
  22183    7 * 3169            38122     2 * 7^2 * 389          16          7
  22813    7 * 3259            31822     2 * 7 * 2273           16          7
  23884    2^2 * 7 * 853       48832     2^6 * 7 * 109          25          7
  24451    7^2 * 499           15442     2 * 7 * 1103           16          7
  25207    7 * 13 * 277        70252     2^2 * 7 * 13 * 193     16          7
  25459    7 * 3637            95452     2^2 * 7^2 * 487        25          7
  26026    2 * 7 * 11 * 13^2   62062     2 * 7 * 11 * 13 * 31   16          7
  26278    2 * 7 * 1877        87262     2 * 7 * 23 * 271       25          7
  26908    2^2 * 7 * 31^2      80962     2 * 7 * 5783           25          7
  26971    7 * 3853            17962     2 * 7 * 1283           25          7
  27097    7^3 * 79            79072     2^5 * 7 * 353          25          7
  27727    7 * 17 * 233        72772     2^2 * 7 * 23 * 113     25          7
  27979    7^2 * 571           97972     2^2 * 7 * 3499         34          7
  28546    2 * 7 * 2039        64582     2 * 7^2 * 659          25          7
  28798    2 * 7 * 11^2 * 17   89782     2 * 7 * 11^2 * 53      34          7
  29113    7 * 4159            31192     2^3 * 7 * 557          16          7
  29365    5 * 7 * 839         56392     2^3 * 7 * 19 * 53      25          7
  30121    7 * 13 * 331        12103     7^2 * 13 * 19          7           7
  30373    7 * 4339            37303     7 * 73^2               16          7
  31129    7 * 4447            92113     7 * 13159              16          7
  31192    2^3 * 7 * 557       29113     7 * 4159               16          7
  31822    2 * 7 * 2273        22813     7 * 3259               16          7
  32641    7 * 4663            14623     7 * 2089               16          7
  32893    7 * 37 * 127        39823     7 * 5689               25          7
  33649    7 * 11 * 19 * 23    94633     7 * 11 * 1229          25          7
  34216    2^3 * 7 * 13 * 47   61243     7 * 13 * 673           16          7
  34468    2^2 * 7 * 1231      86443     7 * 53 * 233           25          7
  35035    5 * 7^2 * 11 * 13   53053     7 * 11 * 13 * 53       16          7
  35287    7 * 71^2            78253     7^2 * 1597             25          7
  35917    7^2 * 733           71953     7 * 19 * 541           25          7
  36736    2^7 * 7 * 41        63763     7 * 9109               25          7
  36988    2^2 * 7 * 1321      88963     7 * 71 * 179           34          7
  37303    7 * 73^2            30373     7 * 4339               16          7
  37555    5 * 7 * 29 * 37     55573     7 * 17 * 467           25          7
  38122    2 * 7^2 * 389       22183     7 * 3169               16          7
  38374    2 * 7 * 2741        47383     7^2 * 967              25          7
  39823    7 * 5689            32893     7 * 37 * 127           25          7

No comments:

Post a Comment