What I mean by a 6-P-6 prime is a prime, greater than 2, whose two adjacent composite numbers contain exactly six prime factors with multiplicity. There are only 30 such primes in the range up to 40000 and they are (permalink):
1889, 3079, 4591, 5023, 7649, 12689, 13751, 18089, 19249, 19889, 22193, 22639, 23057, 23311, 23561, 26839, 27919, 28027, 28751, 30449, 30941, 31121, 32993, 33641, 33967, 36251, 38177, 38431, 39799, 39929
Here are the details:
previous prime next
2^5 * 59 1889 2 * 3^3 * 5 * 7
2 * 3^4 * 19 3079 2^3 * 5 * 7 * 11
2 * 3^3 * 5 * 17 4591 2^4 * 7 * 41
2 * 3^4 * 31 5023 2^5 * 157
2^5 * 239 7649 2 * 3^2 * 5^2 * 17
2^4 * 13 * 61 12689 2 * 3^3 * 5 * 47
2 * 5^4 * 11 13751 2^3 * 3^2 * 191
2^3 * 7 * 17 * 19 18089 2 * 3^3 * 5 * 67
2^4 * 3 * 401 19249 2 * 5^3 * 7 * 11
2^4 * 11 * 113 19889 2 * 3^2 * 5 * 13 * 17
2^4 * 19 * 73 22193 2 * 3^4 * 137
2 * 3 * 7^3 * 11 22639 2^4 * 5 * 283
2^4 * 11 * 131 23057 2 * 3^3 * 7 * 61
2 * 3^2 * 5 * 7 * 37 23311 2^4 * 31 * 47
2^3 * 5 * 19 * 31 23561 2 * 3^2 * 7 * 11 * 17
2 * 3^3 * 7 * 71 26839 2^3 * 5 * 11 * 61
2 * 3^3 * 11 * 47 27919 2^4 * 5 * 349
2 * 3^4 * 173 28027 2^2 * 7^2 * 11 * 13
2 * 5^4 * 23 28751 2^4 * 3 * 599
2^4 * 11 * 173 30449 2 * 3 * 5^2 * 7 * 29
2^2 * 5 * 7 * 13 * 17 30941 2 * 3^4 * 191
2^4 * 5 * 389 31121 2 * 3^2 * 7 * 13 * 19
2^5 * 1031 32993 2 * 3^3 * 13 * 47
2^3 * 5 * 29^2 33641 2 * 3^3 * 7 * 89
2 * 3^3 * 17 * 37 33967 2^4 * 11 * 193
2 * 5^4 * 29 36251 2^2 * 3^2 * 19 * 53
2^5 * 1193 38177 2 * 3^3 * 7 * 101
2 * 3^2 * 5 * 7 * 61 38431 2^5 * 1201
2 * 3^3 * 11 * 67 39799 2^3 * 5^2 * 199
2^3 * 7 * 23 * 31 39929 2 * 3 * 5 * 11^3
The algorithm linked to above is easily modified to find 7-P-7 primes that are surrounded by two composite numbers with exactly seven prime factors with multiplicity. There are only four in the range up to 40000 are these are 10529, 15391, 32561 and 35153. The details are (permalink):previous prime next 2^5 * 7 * 47 10529 2 * 3^4 * 5 * 13 2 * 3^4 * 5 * 19 15391 2^5 * 13 * 37 2^4 * 5 * 11 * 37 32561 2 * 3^5 * 67 2^4 * 13^3 35153 2 * 3^4 * 7 * 31
There are no 8-P-8 primes in the range up to 40000 but if we extend the range to 100000 we find one (permalink):
previous prime next 2^6 * 11 * 107 75329 2 * 3^5 * 5 * 31
These number properties of certain primes are not base-dependent. Obviously as the numbers get bigger there will be instances of 9-P-9 primes and beyond.
No comments:
Post a Comment