This post follows on from a previous one so it's best to read that first in order to understand what I'm on about. Here is the link:
For example, consider the case of$$a_n= \text{ sum of digits } \big ( a_{n-1}^2+a_{n-2}^2 \big ),a_0=0, a_1=1$$Here we the sequence begins 0, 1, 1, 2, 5, 11, 11, 8, 14, 8, 8, 11, 14, 11, 11, 8, ... but we see that we have the loop shown in bold. The total number of terms generated is seven and these are 0, 1, 2, 5, 8, 11 and 14. The number of terms generated by the different values of \(k\) is as follows (the first element in the ordered pair is the \(k\) value and the second element is the number of terms):
[(2, 7), (3, 13), (4, 8), (5, 18), (6, 7), (7, 30), (8, 13), (9, 29), (10, 12), (11, 27), (12, 11), (13, 37), (14, 19), (15, 22), (16, 15), (17, 37), (18, 13), (19, 41), (20, 22), (21, 37), (22, 13), (23, 28), (24, 12), (25, 34), (26, 27), (27, 48), (28, 14), (29, 23), (30, 11), (31, 39), (32, 35), (33, 19), (34, 10), (35, 48), (36, 12), (37, 44), (38, 26), (39, 40), (40, 28), (41, 35), (42, 22), (43, 59), (44, 35), (45, 32), (46, 24), (47, 47), (48, 15), (49, 61), (50, 46)
It can be seen that the largest number of terms (61) occurs when \(k=49\). As for the maximum values, the sequence that arises is as follows:
14, 28, 35, 45, 56, 91, 83, 110, 98, 135, 128, 151, 155, 181, 197, 218, 200, 241, 275, 271, 296, 286, 308, 319, 341, 351, 350, 376, 353, 410, 443, 433, 395, 495, 443, 501, 551, 521, 548, 565, 614, 620, 614, 604, 611, 646, 641, 716, 701
Figure 1 shows the graph of this sequence and highlights its basically linear behaviour:
Figure 1 |
Figure 2 shows the code (permalink) to generate the necessary details:
Figure 2 |
0, 1, 2, 3, 5, 12, 11, 20, 15, 17, 9, 23, 8, 18, 26, 18, 20, 14, 21, 11, 15, 20, 17, 9, 23, 21, 8, 8, 18, 20, 15, 5, 20, 6, 20, 15, 8, 14, 21, 17, 18, 8, 11, 24, 14, 21, 11, 11, 24, 17, 9, 14, 8, 9, 8, 9, 11, 14, 12, 11, 15, 20, 17, ...
26, 28, 47, 56, 57, 82, 99, 118, 119, 147, 173, 183, 188, 206, 209, 214, 236, 282, 263, 271, 297, 311, 335, 338, 371, 357, 389, 409, 399, 442, 459, 468, 485, 457, 525, 541, 558, 567, 566, 633, 579, 651, 659, 666, 666, 699, 722, 714, 735, ...
No comments:
Post a Comment