This post follows on from a previous one so it's best to read that first in order to understand what I'm on about. Here is the link:
For example, consider the case ofan= sum of digits (a2n−1+a2n−2),a0=0,a1=1
[(2, 7), (3, 13), (4, 8), (5, 18), (6, 7), (7, 30), (8, 13), (9, 29), (10, 12), (11, 27), (12, 11), (13, 37), (14, 19), (15, 22), (16, 15), (17, 37), (18, 13), (19, 41), (20, 22), (21, 37), (22, 13), (23, 28), (24, 12), (25, 34), (26, 27), (27, 48), (28, 14), (29, 23), (30, 11), (31, 39), (32, 35), (33, 19), (34, 10), (35, 48), (36, 12), (37, 44), (38, 26), (39, 40), (40, 28), (41, 35), (42, 22), (43, 59), (44, 35), (45, 32), (46, 24), (47, 47), (48, 15), (49, 61), (50, 46)
It can be seen that the largest number of terms (61) occurs when k=49. As for the maximum values, the sequence that arises is as follows:
14, 28, 35, 45, 56, 91, 83, 110, 98, 135, 128, 151, 155, 181, 197, 218, 200, 241, 275, 271, 296, 286, 308, 319, 341, 351, 350, 376, 353, 410, 443, 433, 395, 495, 443, 501, 551, 521, 548, 565, 614, 620, 614, 604, 611, 646, 641, 716, 701
Figure 1 shows the graph of this sequence and highlights its basically linear behaviour:
![]() |
Figure 1 |
Figure 2 shows the code (permalink) to generate the necessary details:
![]() |
Figure 2 |
0, 1, 2, 3, 5, 12, 11, 20, 15, 17, 9, 23, 8, 18, 26, 18, 20, 14, 21, 11, 15, 20, 17, 9, 23, 21, 8, 8, 18, 20, 15, 5, 20, 6, 20, 15, 8, 14, 21, 17, 18, 8, 11, 24, 14, 21, 11, 11, 24, 17, 9, 14, 8, 9, 8, 9, 11, 14, 12, 11, 15, 20, 17, ...
26, 28, 47, 56, 57, 82, 99, 118, 119, 147, 173, 183, 188, 206, 209, 214, 236, 282, 263, 271, 297, 311, 335, 338, 371, 357, 389, 409, 399, 442, 459, 468, 485, 457, 525, 541, 558, 567, 566, 633, 579, 651, 659, 666, 666, 699, 722, 714, 735, ...
No comments:
Post a Comment