Thursday, 19 November 2020

Personal Investigation: Part Three

This post builds on my two previous posts so it's best to look at those first in order to properly understand what I'm doing. These posts are:

Looking at the maximal values associated with progressively summing the squares of dyads, triads, tetrads etc. and then finding the sum of their digits, the need for a consistent notational system arose. I wanted to be able to describe that specific term in the sequence with the maximum value for a particular \(k\). Thus I came up with \( a_{k_{max, \, N}} \) for this maximum value where \(k\) is the exponent and \(N\) is the number of terms that are being added together. Let's look at some specific examples:

DYAD

\(a_{k_{max, \, N=2}}\) can be used to represent the maximum value attained by \( a_n \) for a particular \(k\) when summing two terms progressively, where:$$a_n= \text{ sum of digits } \big (a_{n-1}^k+a_{n-2}^k \big ) \text { with }a_0=0, a_1=1$$The sequence for \(2 \leq k \leq 50\) is as follows:

[14, 28, 35, 45, 56, 91, 83, 110, 98, 135, 128, 151, 155, 181, 197, 218, 200, 241, 275, 271, 296, 286, 308, 319, 341, 351, 350, 376, 353, 410, 443, 433, 395, 495, 443, 501, 551, 521, 548, 565, 614, 620, 614, 604, 611, 646, 641, 716, 701]

So we can write \(a_{2_{max, \, N=2}}=14\),  \(a_{3_{max, \, N=2}}=28\) etc.

TRIAD

\(a_{k_{max, \, N=3}}\) can be used to represent the maximum value attained by \( a_n \) for a particular \(k\) when summing three terms progressively, where:$$a_n= \text{ sum of digits } \big (a_{n-1}^k+a_{n-2}^k +a_{n-3}^k\big ) \text { with }a_0=0, a_1=1,a_2=2$$The sequence for \(2 \leq k \leq 50\) is:

[24, 34, 35, 58, 66, 93, 98, 99, 117, 140, 147, 165, 191, 181, 197, 218, 236, 248, 266, 297, 297, 311, 309, 347, 344, 362, 360, 408, 416, 436, 425, 449, 479, 482, 479, 544, 546, 546, 566, 570, 597, 624, 632, 702, 665, 664, 696, 710, 725]

 So we can write \(a_{2_{max, \, N=3}}=24\),  \(a_{3_{max, \, N=3}}=34\) etc.

TETRAD

\(a_{k_{max, \, N=4}}\) can be used to represent the maximum value attained by \( a_n \) for a particular \(k\) when summing four terms progressively, where:$$a_n= \text{ sum of digits } \big (a_{n-1}^k+a_{n-2}^k +a_{n-3}^k+a_{n-4}^k\big )$$ $$ \text { with }a_0=0, a_1=1, a_2=2, a_3=3$$The sequence for \(2 \leq k \leq 50\) is:

[26, 28, 47, 56, 57, 82, 99, 118, 119, 147, 173, 183, 188, 206, 209, 214, 236, 282, 263, 271, 297, 311, 335, 338, 371, 357, 389, 409, 399, 442, 459, 476, 485, 457, 525, 541, 575, 567, 566, 633, 579, 651, 659, 666, 666, 699, 722, 762, 764]

So we can write \(a_{2_{max, \, N=4}}=26\),  \(a_{3_{max, \, N=4}}=28\) etc. 

PENTAD

\(a_{k_{max, \, N=5}}\) can be used to represent the maximum value attained by \( a_n \) for a particular \(k\) when summing five terms progressively, where:$$a_n= \text{ sum of digits } \big (a_{n-1}^k+a_{n-2}^k +a_{n-3}^k+a_{n-4}^k+a_{n-5}^k\big )$$ $$ \text { with }a_0=0, a_1=1, a_2=2, a_3=3, a_4=4$$The sequence for \(2 \leq k \leq 50\) is:

[26, 37, 38, 63, 65, 98, 92, 118, 122, 147, 156, 186, 197, 199, 198, 234, 255, 266, 281, 306, 324, 324, 335, 362, 357, 380, 405, 408, 426, 458, 474, 496, 504, 510, 516, 559, 557, 577, 563, 604, 588, 628, 657, 667, 695, 709, 686, 754, 764]

So we can write \(a_{2_{max, \, N=5}}=26\),  \(a_{3_{max, \, N=5}}=37\) etc.  

HEXAD

\(a_{k_{max, \, N=6}}\) can be used to represent the maximum value attained by \( a_n \) for a particular \(k\) when summing six terms progressively, where:$$a_n= \text{ sum of digits } \big (a_{n-1}^k+a_{n-2}^k +a_{n-3}^k+a_{n-4}^k+a_{n-5}^k+a_{n-6}^k\big )$$ $$ \text { with }a_0=0, a_1=1, a_2=2, a_3=3, a_4=4,a_5=4$$The sequence for \(2 \leq k \leq 50\) is:

[26, 39, 47, 66, 78, 91, 98, 118, 131, 147, 167, 175, 191, 207, 234, 232, 230, 269, 281, 288, 311, 335, 329, 355, 380, 393, 452, 412, 437, 440, 464, 486, 509, 510, 528, 544, 585, 575, 576, 608, 617, 630, 654, 656, 684, 705, 725, 734, 764]

So we can write \(a_{2_{max, \, N=6}}=26\),  \(a_{3_{max, \, N=6}}=39\) etc.  

To be continued:

No comments:

Post a Comment