I've made mention of sphenic numbers in three earlier posts. Specifically:
- Sphenic Numbers on Monday, 25th June 2018
- Sphenic Numbers Revisited on Tuesday, 1st January 2019
- An Unhappy Family on Monday, 10th June 2019
I've long championed the association between the surface area of a sphenic brick and its volume. Consider a sphenic number such as 170 that factors to 2 * 5 * 17. It can be considered to represent a rectangular prism with volume 170 cubic units and dimensions of 2, 5 and 7 units. The surface area of such a prism is 258 square units. In previous posts, I've examined the ratio of surface area to volume but today a thought struck me. What if the surface area itself in a sphenic number? This would mean that the surface area could be linked to another rectangular prism.

I then got to thinking about the maximum number of iterations possible up to a certain limit. To investigate this, I needed to develop a robust algorithm and I spent most of the day tinkering with one. In the end, using SageMathCell, I succeeded. Here's a permalink to the coding window and below are the runs of eight iterations up to 40,000:
- [7386, 12322, 12970, 18178, 19018, 20194, 22042, 22882, 25642]
- [8078, 10414, 11086, 12142, 14062, 14734, 15502, 16942, 17902]
- [9514, 10066, 12970, 18178, 19018, 20194, 22042, 22882, 25642]
- [9515, 5646, 9422, 12142, 14062, 14734, 15502, 16942, 17902]
- [9562, 12322, 12970, 18178, 19018, 20194, 22042, 22882, 25642]
- [10634, 12322, 12970, 18178, 19018, 20194, 22042, 22882, 25642]
- [15085, 10414, 11086, 12142, 14062, 14734, 15502, 16942, 17902]
- [15110, 21174, 35302, 39094, 46246, 51190, 71686, 73942, 87430]
- [15654, 26102, 27910, 39094, 46246, 51190, 71686, 73942, 87430]
- [23313, 18110, 25374, 42302, 48862, 57790, 80926, 84862, 86590]
- [27363, 26102, 27910, 39094, 46246, 51190, 71686, 73942, 87430]
- [28217, 10414, 11086, 12142, 14062, 14734, 15502, 16942, 17902]
- [30173, 10414, 11086, 12142, 14062, 14734, 15502, 16942, 17902]
- [30441, 21566, 22782, 37982, 48862, 57790, 80926, 84862, 86590]
- [32331, 26606, 27822, 46382, 59662, 64942, 71854, 75886, 83950]
- [35121, 26606, 27822, 46382, 59662, 64942, 71854, 75886, 83950]
So starting with 7386, there is then a run of eight sphenic numbers generated by the volume-area iteration. The run ends at 25642 which is not a sphenic number. Similarly for the other chains shown and it should be noted that several chains merge into others. For example, 7386, 9514 and 9562, all end with 25642. So, how many iterations are possible? Well, up to
- 8710117, 1384374, 2307302, 2394582, 3990982, 4009942, 4044454, 4470262, 4758790, 6662326, 7873702, 8021302, 8362822, 9649462, 9733222, 10186102
The factorisations are:
number factor 8710117 13 * 613 * 1093 1384374 2 * 3 * 230729 2307302 2 * 53 * 21767 2394582 2 * 3 * 399097 3990982 2 * 467 * 4273 4009942 2 * 239 * 8389 4044454 2 * 19 * 106433 4470262 2 * 31 * 72101 4758790 2 * 5 * 475879 6662326 2 * 11 * 302833 7873702 2 * 107 * 36793 8021302 2 * 47 * 85333 8362822 2 * 13 * 321647 9649462 2 * 233 * 20707 9733222 2 * 43 * 113177
101861022 * 23 * 79 * 2803 - 9469213, 1768854, 2948102, 2958742, 3118822, 4009942, 4044454, 4470262, 4758790, 6662326, 7873702, 8021302, 8362822, 9649462, 9733222, 10186102
The factorisations are:
number factor 9469213 13 * 61 * 11941 1768854 2 * 3 * 294809 2948102 2 * 787 * 1873 2958742 2 * 37 * 39983 3118822 2 * 7 * 222773 4009942 2 * 239 * 8389 4044454 2 * 19 * 106433 4470262 2 * 31 * 72101 4758790 2 * 5 * 475879 6662326 2 * 11 * 302833 7873702 2 * 107 * 36793 8021302 2 * 47 * 85333 8362822 2 * 13 * 321647 9649462 2 * 233 * 20707 9733222 2 * 43 * 113177
101861022 * 23 * 79 * 2803 - 9749077, 1768854, 2948102, 2958742, 3118822, 4009942, 4044454, 4470262, 4758790, 6662326, 7873702, 8021302, 8362822, 9649462, 9733222, 10186102
The factorisations are:
number factor 9749077 13 * 73 * 10273 1768854 2 * 3 * 294809 2948102 2 * 787 * 1873 2958742 2 * 37 * 39983 3118822 2 * 7 * 222773 4009942 2 * 239 * 8389 4044454 2 * 19 * 106433 4470262 2 * 31 * 72101 4758790 2 * 5 * 475879 6662326 2 * 11 * 302833 7873702 2 * 107 * 36793 8021302 2 * 47 * 85333 8362822 2 * 13 * 321647 9649462 2 * 233 * 20707 9733222 2 * 43 * 113177
101861022 * 23 * 79 * 2803
No comments:
Post a Comment