Sunday, 11 June 2023

Linear Relationships Between Loeschian Numbers

It all began innocently enough with my investigation of the number associated with my diurnal age today, 27097. It turns out that this number is a member of OEIS A198775: 


  A198775

Numbers having exactly four representations by the quadratic form x2+xy+y2 with 0xy.

We see that: 72+7×161+1612=27097472+47×136+1362=27097642+64×123+1232=27097772+77×112+1122=27097

The first member of the sequence is the famous taxi cab number 1729 and I've written about this in my post titled Loeschian Numbers on January 5th 2022.

I then decided to investigate what numbers have exactly five representations by the quadratic form x2+xy+y2 with 0xy. The initial numbers that satisfy this condition are 8281, 17689, 24843, 31213, 33124, 45619, 47089, 53067, 56203, 56791, 57967, 62377, 63973, ...

For example 8281 has (x,y) representations as:

(0, 91), (11, 85), (19, 80), (39, 65), (49, 56)

The sequence is not recognised by the OEIS. I then moved to numbers that have six such representations. This yielded 12103, 19747, 22477, 23569, 27391, 28861, 32851, 34447, 36309, 36673, 38857, 40033, 42679, 43771, 46501, 48412, 50323, 50869, ...

For example, 12103 has (x,y) representations as:

(2, 109), (21, 98), (27, 94), (34, 89), (49, 77), (61, 66) 

Again, this sequence is not recognised by the OEIS. I then turned to numbers that have seven such representations. This yielded 104377 and 105469 although I'm sure there are more if I extended the search.

For example, 104377 has (x,y) representations as:

(47, 297), (69, 283), (72, 281), (107, 256), (131, 237), 137, 232), (181, 192) 

Again this sequence is not recognised by the OEIS. I then turned to numbers that have eight such representation. This yielded 53599, 63973, 74347, 84721, ...

For example, 53599 has (x,y) representations as:

(3, 230) (25, 218) (43, 207) (58, 197) (85, 177) (90, 173) (102, 163) (122, 145) 

Again this sequence wasn't recognised by the OEIS but I got the following intriguing message:

Sorry, but the terms do not match anything in the table.

Your sequence appears to be: 10374x+43225

This rather shocked me but it's indeed true. I checked the factorisation of the two numbers and as can be seen they are highly factorisable:10374=2×3×7×13×1943225=52×7×13×19

Furthermore, we have:10374×1+43225=5359910374×2+43225=6397310374×3+43225=7434710374×4+43225=84721
However, using my Jupyter notebook, I extended the range of terms and found that the very next term after 84721 did not match up. The next term is 104377 but10374×5+43225=95095104377
Later terms however, do match up even though, term by term, the two series diverge sharply (see Figure 1) .


Figure 1

Actual Series: 

53599, 63973, 74347, 84721, 104377, 105469, 115843, 121303, 126217, 136591, 138229, 144781, 152551, 160797, 164983, 167713, 172081, 177289, 178087, 188461, 189007, 191737, 191919, 202027, 205387, 205933, 211603, 214396, 219583, 222859, 223041, 225589, 238693, 240331, 241129, 245791, 251503, 254163, 255892, 261079, 262171, 265993, 271453, 271999, 273637, 276241, 280231, 281827, 283309, 285649, 290563, 292201, 297388, 298753, 300181, 300979, 307489, 309127, 312949, 313131, 316407, 325507, 325717, 326599, 329251, 329707, 333697, 338884, 344071, 345247, 346801, 347529, 348859, 352261, 358267, 359233, 363909, 364819, 367003, 371917, 378651, 379561, 383173, 385567, 388759, 392119, 392977, 393421, 395941, 397537, 399931, 403039, 405223, 405769, 409773, 414687, 416689, 417487, 417508, 421876, 424669, 425971, 426517, 427609, 432523, 434343, 436639, 438529, 442897, 445081, 449407, 451801, 457219, 457653, 459277, 459823, 463372, 467077, 468013, 468559, 475741, 476749, 477337, 478933, 481663, 482391, 485212, 486031, 489307, 489769, 494949, 496951, 503139, 504868, 506863, 508417, 510601, 513019, 514843, 516243, 523621, 524797, 528619, 530803, 531867, 534261, 536389, 537943, 538447, 541177, 543571, 543907, 544453, 545713, 546364, 548821, 552916, 554743, 557479, 558961, 561379, 565383, 566293, 567021, 569023, 569191, 571753, 572299, 573097, 575211, 575757, 579124, 582673, 586117, 589057, 590863, 591409, 592249, 595231, 603421, 604903, 605059, 606081, 609427, 610204, 612313, 614341, 616161, 617799, 619801, 622573, 623371, 624169, 624967, 625177, 627991, 629083, 632149, 634291, 634543, 634809, 637819, 640927, 641173, 643188, 644371, 644917, 646009, 647311, 647881, 648613, 649831, 650503, 655291, 658749, 659932, 661297, 664573, 667147, 668577, 669123, 670033, 670852, 671251, 672049, 673309, 676767, 679357, 679861, 681163, 684019, 684229, 686413, 688324, 697333, 700063, 703969, 704977, 707161, 708253, 709156, 710353, 710437, 711607, 712348, 712411, 716079, 720993, 721981, 723387, 724087, 726313, 726817, 727909, 737149, 737373, 740467, 742729, 743071, 746179, 746263, 748657, 750841, 753571, 753844, 754509, 755209, 756028, 759031, 762489, 764491, 766948, 767011, 767676, 771043, 771589, 772597, 774151, 774319, 775333, 776209, 778687, 778813, 781417, 783237, 783601, 786513, 786961, 788671, 790153, 794941, 795739, 797979, 798343, 800527, 802123, 807079, 808108, 811447, 813001, 814359, 815997, 820477, 820911, 821548, 823732, 825643, 826987, 827659, 828723, 834613, 835639, 838201, 839059, 840007, 840693, 842023, 843661, 845481, 846412, 847483, 849927, 850297, 856947, 857584, 860587, 862771, 863569, 864367, 866047, 866761, 869953, 871507, 871689, 872599, 875161, 876603, 878332, 879823, 882973, 884317, 886483, 886879, 887341, 890701, 891436, 892164, 896077, 896259, 897883, 899689, 900543, 902356, 902937, 904267, 904813, 905107, 905863, 909181, 909571, 912457, 913003, 917833, 919429, 920647, 922467, 923377, 926443, 927381, 932197, 932659, 933751, 935389, 937099, 938119, 938847, 939393, 940849, 941317, 941773, 943033, 944167, 945763, 949221, 949753, 950677, 952861, 954772, 957229, 961093, 961324, 962143, 964516, 966301, 971299, 972439, 976521, 977151, 979279, 979797, 983164, 984067, 984529, 987259, 987753, 988183, 989121, 993643, 993811, 994357, 996151, 997633, 999037, 999271, 1000027, 1001091, 1002589, 1003093, 1004731, 1009489, 1016652, 1019179, 1019683, 1021657, 1023568, 1030351, 1030393, 1031401, 1032213, 1035139, 1035741, 1038331, 1042587, 1042951, 1044316, 1049503, 1051687, 1052233, 1057069, 1060423, 1061347, 1062271, 1063972, 1068249, 1079029, 1093963, 1121029, 1128673, 1151059, 1177813, 1215487, 1241023, 1246609, 1319227, 1323049, 1356901

Linear Series: 

53599, 63973, 74347, 84721, 95095, 105469, 115843, 126217, 136591, 146965, 157339, 167713, 178087, 188461, 198835, 209209, 219583, 229957, 240331, 250705, 261079, 271453, 281827, 292201, 302575, 312949, 323323, 333697, 344071, 354445, 364819, 375193, 385567, 395941, 406315, 416689, 427063, 437437, 447811, 458185, 468559, 478933, 489307, 499681, 510055, 520429, 530803, 541177, 551551, 561925, 572299, 582673, 593047, 603421, 613795, 624169, 634543, 644917, 655291, 665665, 676039, 686413, 696787, 707161, 717535, 727909, 738283, 748657, 759031, 769405, 779779, 790153, 800527, 810901, 821275, 831649, 842023, 852397, 862771, 873145, 883519, 893893, 904267, 914641, 925015, 935389, 945763, 956137, 966511, 976885, 987259, 997633, 1008007, 1018381, 1028755, 1039129, 1049503, 1059877, 1070251, 1080625, 1090999, 1101373, 1111747, 1122121, 1132495, 1142869, 1153243, 1163617, 1173991, 1184365, 1194739, 1205113, 1215487, 1225861, 1236235, 1246609, 1256983, 1267357, 1277731, 1288105, 1298479, 1308853, 1319227, 1329601, 1339975, 1350349, 1360723, 1371097, 1381471, 1391845, 1402219, 1412593, 1422967, 1433341, 1443715, 1454089, 1464463, 1474837, 1485211, 1495585, 1505959, 1516333, 1526707, 1537081, 1547455, 1557829, 1568203, 1578577, 1588951, 1599325, 1609699, 1620073, 1630447, 1640821, 1651195, 1661569, 1671943, 1682317, 1692691, 1703065, 1713439, 1723813, 1734187, 1744561, 1754935, 1765309, 1775683, 1786057, 1796431, 1806805, 1817179, 1827553, 1837927, 1848301, 1858675, 1869049, 1879423, 1889797, 1900171, 1910545, 1920919, 1931293, 1941667, 1952041, 1962415, 1972789, 1983163, 1993537, 2003911, 2014285, 2024659, 2035033, 2045407, 2055781, 2066155, 2076529, 2086903, 2097277, 2107651, 2118025, 2128399, 2138773, 2149147, 2159521, 2169895, 2180269, 2190643, 2201017, 2211391, 2221765, 2232139, 2242513, 2252887, 2263261, 2273635, 2284009, 2294383, 2304757, 2315131, 2325505, 2335879, 2346253, 2356627, 2367001, 2377375, 2387749, 2398123, 2408497, 2418871, 2429245, 2439619, 2449993, 2460367, 2470741, 2481115, 2491489, 2501863, 2512237, 2522611, 2532985, 2543359, 2553733, 2564107, 2574481, 2584855, 2595229, 2605603, 2615977, 2626351, 2636725, 2647099, 2657473, 2667847, 2678221, 2688595, 2698969, 2709343, 2719717, 2730091, 2740465, 2750839, 2761213, 2771587, 2781961, 2792335, 2802709, 2813083, 2823457, 2833831, 2844205, 2854579, 2864953, 2875327, 2885701, 2896075, 2906449, 2916823, 2927197, 2937571, 2947945, 2958319, 2968693, 2979067, 2989441, 2999815, 3010189, 3020563, 3030937, 3041311, 3051685, 3062059, 3072433, 3082807, 3093181, 3103555, 3113929, 3124303, 3134677, 3145051, 3155425, 3165799, 3176173, 3186547, 3196921, 3207295, 3217669, 3228043, 3238417, 3248791, 3259165, 3269539, 3279913, 3290287, 3300661, 3311035, 3321409, 3331783, 3342157, 3352531, 3362905, 3373279, 3383653, 3394027, 3404401, 3414775, 3425149, 3435523, 3445897, 3456271, 3466645, 3477019, 3487393, 3497767, 3508141, 3518515, 3528889, 3539263, 3549637, 3560011, 3570385, 3580759, 3591133, 3601507, 3611881, 3622255, 3632629, 3643003, 3653377, 3663751, 3674125, 3684499, 3694873, 3705247, 3715621, 3725995, 3736369, 3746743, 3757117, 3767491, 3777865, 3788239, 3798613, 3808987, 3819361, 3829735, 3840109, 3850483, 3860857, 3871231, 3881605, 3891979, 3902353, 3912727, 3923101, 3933475, 3943849, 3954223, 3964597, 3974971, 3985345, 3995719, 4006093, 4016467, 4026841, 4037215, 4047589, 4057963, 4068337, 4078711, 4089085, 4099459, 4109833, 4120207, 4130581, 4140955, 4151329, 4161703, 4172077, 4182451, 4192825, 4203199, 4213573, 4223947, 4234321, 4244695, 4255069, 4265443, 4275817, 4286191, 4296565, 4306939, 4317313, 4327687, 4338061, 4348435, 4358809, 4369183, 4379557, 4389931, 4400305, 4410679, 4421053, 4431427, 4441801, 4452175, 4462549, 4472923, 4483297, 4493671, 4504045, 4514419, 4524793, 4535167, 4545541, 4555915, 4566289, 4576663, 4587037, 4597411, 4607785, 4618159, 4628533, 4638907, 4649281, 4659655, 4670029, 4680403, 4690777, 4701151, 4711525, 4721899, 4732273, 4742647, 4753021, 4763395, 4773769

Matching Terms:

53599, 63973, 74347, 84721, 105469, 115843, 126217, 136591, 167713, 178087, 188461, 219583, 240331, 261079, 271453, 281827, 292201, 312949, 333697, 344071, 364819, 385567, 395941, 416689, 468559, 478933, 489307, 530803, 541177, 572299, 582673, 603421, 624169, 634543, 644917, 655291, 686413, 707161, 727909, 748657, 759031, 790153, 800527, 842023, 862771, 904267, 935389, 945763, 987259, 997633, 1049503, 1215487, 1246609, 1319227

54 out the 346 terms that I generated match up with the linear sequence. That's almost 20% of the terms. There's clearly more at play here than meets the eye but I don't know what it is. If we look at the list of matching terms, we find the following values for x in 10374x+43225 generate the terms in the sequence:

1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 17, 19, 21, 22, 23, 24, 26, 28, 29, 31, 33, 34, 36, 41, 42, 43, 47, 48, 51, 52, 54, 56, 57, 58, 59, 62, 64, 66, 68, 69, 72, 73, 77, 79, 83, 86, 87, 91, 92, 97, 113, 116, 123

Thus for the last term we have 10374×123+43225=1319227.

No comments:

Post a Comment