They are a set of whole numbers, including zero, and having prime factorisation in which all primes congruent to 2 mod 3 have even powers (there is no restriction of primes congruent to 0 or 1 mod 3).
Now
A198775 | Numbers having exactly four representations by the quadratic form |
1729, 2821, 3367, 3913, 4123, 4459, 4921, 5187, 5551, 5719, 6097, 6517, 6643, 6916, 7189, 7657, 8029, 8113, 8463, 8827, 8911, 9139, 9331, 9373, 9709, 9919, 10101, 10507, 10621, 10633, 11137, 11284, 11557, 11739, 12369, 12649, 12691, 12901, 13237, 13377, ...
It has the following representations:
The Loeschian numbers are named after August Lösch whose Wikipedia entry remarks:
Overall, Lösch made a plenitude of significant findings in the world of economics, but his main contributions were to regional economics, specifically, pioneering the location theory, spatial equilibrium analysis and hierarchical spatial systems displaying a hexagonal pattern.
Figure 1 shows the triangular or, when combined into groups of six, the hexagonal lattice formed by the Eisenstein integers which Lösch must have used in his economic analysis.
Figure 1 |
It turns out the Loeschian numbers are the norms of the Eisenstein integers. In mathematics, Eisenstein integers (named after Gotthold Eisenstein), occasionally also known as Eulerian integers (after Leonhard Euler), are complex numbers of the form:
No comments:
Post a Comment