Order | HCN n | prime factorization | prime exponents | prime factors | d(n) | primorial factorization |
---|---|---|---|---|---|---|
1 | 1 | 0 | 1 | |||
2 | 2 | 1 | 1 | 2 | ||
3 | 4 | 2 | 2 | 3 | ||
4 | 6 | 1,1 | 2 | 4 | ||
5 | 12 | 2,1 | 3 | 6 | ||
6 | 24 | 3,1 | 4 | 8 | ||
7 | 36 | 2,2 | 4 | 9 | ||
8 | 48 | 4,1 | 5 | 10 | ||
9 | 60 | 2,1,1 | 4 | 12 | ||
10 | 120 | 3,1,1 | 5 | 16 | ||
11 | 180 | 2,2,1 | 5 | 18 | ||
12 | 240 | 4,1,1 | 6 | 20 | ||
13 | 360 | 3,2,1 | 6 | 24 | ||
14 | 720 | 4,2,1 | 7 | 30 | ||
15 | 840 | 3,1,1,1 | 6 | 32 | ||
16 | 1260 | 2,2,1,1 | 6 | 36 | ||
17 | 1680 | 4,1,1,1 | 7 | 40 | ||
18 | 2520 | 3,2,1,1 | 7 | 48 | ||
19 | 5040 | 4,2,1,1 | 8 | 60 | ||
20 | 7560 | 3,3,1,1 | 8 | 64 | ||
21 | 10080 | 5,2,1,1 | 9 | 72 | ||
22 | 15120 | 4,3,1,1 | 9 | 80 | ||
23 | 20160 | 6,2,1,1 | 10 | 84 | ||
24 | 25200 | 4,2,2,1 | 9 | 90 | ||
25 | 27720 | 3,2,1,1,1 | 8 | 96 | ||
26 | 45360 | 4,4,1,1 | 10 | 100 | ||
27 | 50400 | 5,2,2,1 | 10 | 108 | ||
28 | 55440 | 4,2,1,1,1 | 9 | 120 | ||
29 | 83160 | 3,3,1,1,1 | 9 | 128 | ||
30 | 110880 | 5,2,1,1,1 | 10 | 144 | ||
31 | 166320 | 4,3,1,1,1 | 10 | 160 | ||
32 | 221760 | 6,2,1,1,1 | 11 | 168 | ||
33 | 277200 | 4,2,2,1,1 | 10 | 180 | ||
34 | 332640 | 5,3,1,1,1 | 11 | 192 | ||
35 | 498960 | 4,4,1,1,1 | 11 | 200 | ||
36 | 554400 | 5,2,2,1,1 | 11 | 216 | ||
37 | 665280 | 6,3,1,1,1 | 12 | 224 | ||
38 | 720720 | 4,2,1,1,1,1 | 10 | 240 |
For example: 25200=24⋅32⋅52⋅7
d(25200)=(4+1)⋅(2+1)⋅(2+1)⋅(1+1)=5⋅3⋅3⋅2=90
The sequence of indices is non-increasing when the prime factor bases are placed in ascending order (4, 2, 2, 1 in the case of 25200). The final index is always 1 except in the cases of 4 and 36 where it is 2, thus making 1, 2 and 4 the only square, highly composite numbers.
No comments:
Post a Comment