A very few numbers have arithmetic derivatives that equal to themselves. These are numbers of the form \(n^n \) where \(n\) is prime. Thus we have \(4 =2^2, 27 =3^3, 3125 =5^5\) etc. What about numbers that have arithmetic derivatives with the same digits but in a different order? The number associated with my diurnal age, \( \textbf{27891}\) today is one such number because:$$ \begin{align} 27891' &= (3^3 \times 1033)' \\ &=(3^3)' \times 1033 + 3^3 \times 1033' \\ &=3^3 \times 1033 + 3^3 \\ &= 27981 + 27 \\&=27918\end{align}$$In the range up to 40000, there are 43 such numbers including those are remain the same such as 4, 27, 3125 etc. The numbers are (permalink):
4, 27, 94, 308, 526, 594, 950, 1208, 1269, 1647, 2403, 3125, 5589, 5643, 5926, 6934, 9369, 10503, 10568, 11084, 11284, 12404, 12447, 13130, 13500, 14024, 14769, 17469, 17847, 18036, 20358, 20547, 20852, 25569, 27891, 28647, 29835, 34803, 36068, 36180, 36747, 38396, 39069
Here is a breakdown of each number's factorisation and permutation:
number factors permutation
4 2^2 4
27 3^3 27
94 2 * 47 49
308 2^2 * 7 * 11 380
526 2 * 263 265
594 2 * 3^3 * 11 945
950 2 * 5^2 * 19 905
1208 2^3 * 151 1820
1269 3^3 * 47 1296
1647 3^3 * 61 1674
2403 3^3 * 89 2430
3125 5^5 3125
5589 3^5 * 23 9558
5643 3^3 * 11 * 19 6453
5926 2 * 2963 2965
6934 2 * 3467 3469
9369 3^3 * 347 9396
10503 3^3 * 389 10530
10568 2^3 * 1321 15860
11084 2^2 * 17 * 163 11804
11284 2^2 * 7 * 13 * 31 14128
12404 2^2 * 7 * 443 14204
12447 3^3 * 461 12474
13130 2 * 5 * 13 * 101 10331
13500 2^2 * 3^3 * 5^3 35100
14024 2^3 * 1753 21044
14769 3^3 * 547 14796
17469 3^3 * 647 17496
17847 3^3 * 661 17874
18036 2^2 * 3^3 * 167 36180
20358 2 * 3^3 * 13 * 29 32805
20547 3^3 * 761 20574
20852 2^2 * 13 * 401 22508
25569 3^3 * 947 25596
27891 3^3 * 1033 27918
28647 3^3 * 1061 28674
29835 3^3 * 5 * 13 * 17 39852
34803 3^3 * 1289 34830
36068 2^2 * 71 * 127 36860
36180 2^2 * 3^3 * 5 * 67 80136
36747 3^3 * 1361 36774
38396 2^2 * 29 * 331 39836
39069 3^3 * 1447 39096
These numbers constitute OEIS A225902. Some of these numbers are also ABCD numbers and these are:
1269, 10503, 12447, 14769, 17469, 17847, 18036, 20358, 20547, 27891, 28647, 29835
For example, 17892 + 27198 + \( \textbf{27891} \) = 72981
No comments:
Post a Comment