I've posted extensively about the trajectories formed by repeatedly adding the sum of the odd digits of a number to the number itself while subtracting the sum of the even digits, or vice versa. My most recent post was on this topic was titled Revisiting Odds And Evens. Instead of dealing with odd and even digits, trajectories involving prime and non-prime digit sums can be considered. The prime digits are 2, 3, 5 and 7 while the non-prime digits are 0, 1, 4, 6, 7 and 9.
For example, the number associated with my diurnal age today is 27632 and it has the following trajectory of 3 steps under the prime and non-prime algorithm (permalink):
27632 --> 27640 --> 27639 --> 27636 --> 27636
The trajectory terminates when the number has a sum of primes and sum of non-primes that are equal, here 2 + 7 + 3 = 6 + 6. Numbers such as these are NOT listed in the OEIS but there is a listing for prime numbers with this property. There are 137 such primes in the range up to 40,000.
A371352: prime numbers such that the sum of their prime digits is equal to the sum of their nonprime digits.
The sequence begins (permalink):
167, 211, 541, 617, 761, 853, 1021, 1201, 1423, 1559, 1607, 1973, 2011, 2143, 2341, 2383, 2833, 3467, 3719, 3823, 3917, 4051, 4231, 4637, 4673, 5261, 5443, 5519, 5591, 6473, 6521, 6701, 7193, 7643, 7687, 7867, 8053, 8233, 8677, 9137, 9173, 9371, 9551, 10067, 10243, 10559, 10607, 10739, 10937, 10973, 11471, 11783, 12043, 12263, 12539, 12953, 13187, 13259, 13709, 13781, 13907, 14779, 14797, 15329, 15361, 15581, 15923, 16007, 16223, 17093, 17183, 17497, 17749, 17903, 18371, 18713, 18731, 19037, 19073, 19477, 20011, 20101, 20143, 20341, 20431, 21001, 22613, 23041, 23159, 24103, 25391, 25463, 25601, 25643, 25867, 25913, 25931, 26321, 26501, 28657, 29153, 29531, 30197, 30241, 30467, 30971, 31079, 31259, 31817, 31907, 32083, 32159, 32261, 32401, 32443, 32621, 32803, 33479, 33749, 34607, 34739, 35129, 35291, 36151, 37019, 37181, 37493, 37811, 37879, 37897, 37987, 38711, 38977, 39107, 39251, 39521, 39877
Many number trajectories will end in what I call an "attractor", using my Odds and Evens terminology. This is a number whose sum of prime and non-prime digits are equal. For completeness, here is a list of all the 446 numbers greater than 27630 and less than 40000 with the property that the sum of their prime digits equals the sum of their non-prime digits (permalink):
27636, 27658, 27663, 27685, 27788, 27801, 27810, 27834, 27843, 27856, 27865, 27878, 27887, 27900, 28017, 28033, 28071, 28107, 28125, 28152, 28170, 28215, 28222, 28251, 28303, 28330, 28347, 28374, 28437, 28455, 28473, 28512, 28521, 28545, 28554, 28567, 28576, 28657, 28675, 28701, 28710, 28734, 28743, 28756, 28765, 28778, 28787, 28877, 29007, 29025, 29052, 29070, 29135, 29153, 29205, 29223, 29232, 29250, 29315, 29322, 29351, 29502, 29513, 29520, 29531, 29700, 30036, 30058, 30063, 30085, 30111, 30124, 30142, 30179, 30197, 30214, 30238, 30241, 30283, 30306, 30328, 30339, 30360, 30382, 30393, 30412, 30421, 30445, 30454, 30467, 30476, 30508, 30544, 30580, 30603, 30630, 30647, 30674, 30719, 30746, 30764, 30791, 30805, 30823, 30832, 30850, 30917, 30933, 30971, 31011, 31024, 31042, 31079, 31097, 31101, 31110, 31134, 31143, 31156, 31165, 31178, 31187, 31204, 31226, 31240, 31259, 31262, 31295, 31314, 31338, 31341, 31383, 31402, 31413, 31420, 31431, 31516, 31529, 31561, 31592, 31615, 31622, 31651, 31709, 31718, 31781, 31790, 31817, 31833, 31871, 31907, 31925, 31952, 31970, 32014, 32038, 32041, 32083, 32104, 32126, 32140, 32159, 32162, 32195, 32216, 32229, 32261, 32292, 32308, 32344, 32380, 32401, 32410, 32434, 32443, 32456, 32465, 32478, 32487, 32519, 32546, 32564, 32591, 32612, 32621, 32645, 32654, 32667, 32676, 32748, 32766, 32784, 32803, 32830, 32847, 32874, 32915, 32922, 32951, 33006, 33028, 33039, 33060, 33082, 33093, 33114, 33138, 33141, 33183, 33208, 33244, 33280, 33309, 33318, 33381, 33390, 33411, 33424, 33442, 33479, 33497, 33600, 33749, 33794, 33802, 33813, 33820, 33831, 33903, 33930, 33947, 33974, 34012, 34021, 34045, 34054, 34067, 34076, 34102, 34113, 34120, 34131, 34201, 34210, 34234, 34243, 34256, 34265, 34278, 34287, 34311, 34324, 34342, 34379, 34397, 34405, 34423, 34432, 34450, 34504, 34526, 34540, 34559, 34562, 34595, 34607, 34625, 34652, 34670, 34706, 34728, 34739, 34760, 34782, 34793, 34827, 34872, 34937, 34955, 34973, 35008, 35044, 35080, 35116, 35129, 35161, 35192, 35219, 35246, 35264, 35291, 35404, 35426, 35440, 35459, 35462, 35495, 35549, 35594, 35611, 35624, 35642, 35679, 35697, 35769, 35796, 35800, 35912, 35921, 35945, 35954, 35967, 35976, 36003, 36030, 36047, 36074, 36115, 36122, 36151, 36212, 36221, 36245, 36254, 36267, 36276, 36300, 36407, 36425, 36452, 36470, 36511, 36524, 36542, 36579, 36597, 36627, 36672, 36704, 36726, 36740, 36759, 36762, 36795, 36957, 36975, 37019, 37046, 37064, 37091, 37109, 37118, 37181, 37190, 37248, 37266, 37284, 37349, 37394, 37406, 37428, 37439, 37460, 37482, 37493, 37569, 37596, 37604, 37626, 37640, 37659, 37662, 37695, 37789, 37798, 37811, 37824, 37842, 37879, 37897, 37901, 37910, 37934, 37943, 37956, 37965, 37978, 37987, 38005, 38023, 38032, 38050, 38117, 38133, 38171, 38203, 38230, 38247, 38274, 38302, 38313, 38320, 38331, 38427, 38472, 38500, 38711, 38724, 38742, 38779, 38797, 38977, 39017, 39033, 39071, 39107, 39125, 39152, 39170, 39215, 39222, 39251, 39303, 39330, 39347, 39374, 39437, 39455, 39473, 39512, 39521, 39545, 39554, 39567, 39576, 39657, 39675, 39701, 39710, 39734, 39743, 39756, 39765, 39778, 39787, 39877
Also for completeness, here is a list of all the numbers greater than 27630 and less than 40000 with the property they map back to themselves after two or more repetitions of the prime / non-prime algorithm. In other words, they are "vorticals" each belonging to a "vortex" to use my Odds and Evens nomenclature.
27675, 27684, 27690, 27823, 27829, 27837, 27848, 27855, 27866, 27873, 27884, 27922, 27926, 27933, 27939, 27954, 27955, 27964, 27965, 27972, 27981, 28027, 28030, 28272, 28273, 28277, 28279, 28282, 28287, 28352, 28355, 28356, 28362, 28532, 28536, 28553, 28560, 28723, 28729, 28737, 28748, 28755, 28766, 28773, 28784, 29272, 29276, 29372, 29373, 29377, 29379, 29382, 29387, 29507, 29511, 29512, 29552, 29553, 29557, 29559, 29566, 29567, 29570, 29575, 29580, 29585, 29722, 29726, 29733, 29739, 29754, 29755, 29764, 29765, 29772, 29781, 30003, 30009, 30012, 30016, 30075, 30084, 30090, 30102, 30106, 30135, 30138, 30145, 30148, 30259, 30260, 30277, 30286, 30296, 30342, 30346, 30378, 30383, 30384, 30387, 30391, 30392, 30432, 30436, 30453, 30460, 30562, 30566, 30652, 30655, 30656, 30662, 30782, 30786, 30795, 30801, 30872, 30876, 30927, 30930, 31002, 31006, 31035, 31038, 31045, 31048, 31123, 31129, 31137, 31148, 31155, 31166, 31173, 31184, 31213, 31219, 31276, 31281, 31359, 31360, 31377, 31386, 31396, 31407, 31411, 31412, 31452, 31453, 31457, 31459, 31466, 31467, 31470, 31475, 31480, 31485, 31543, 31549, 31579, 31584, 31672, 31673, 31677, 31679, 31682, 31687, 31763, 31769, 31827, 31830, 32059, 32060, 32077, 32086, 32096, 32113, 32119, 32176, 32181, 32243, 32249, 32279, 32284, 32362, 32366, 32423, 32429, 32437, 32448, 32455, 32466, 32473, 32484, 32582, 32586, 32632, 32636, 32653, 32660, 32793, 32797, 32799, 32806, 32807, 32811, 32852, 32855, 32856, 32862, 32972, 32973, 32977, 32979, 32982, 32987, 33042, 33046, 33078, 33083, 33084, 33087, 33091, 33092, 33159, 33160, 33177, 33186, 33196, 33262, 33266, 33363, 33369, 33402, 33406, 33435, 33438, 33445, 33448, 33583, 33589, 33592, 33596, 33622, 33626, 33633, 33639, 33654, 33655, 33664, 33665, 33672, 33681, 33807, 33811, 33812, 33852, 33853, 33857, 33859, 33866, 33867, 33870, 33875, 33880, 33885, 33952, 33955, 33956, 33962, 34032, 34036, 34053, 34060, 34107, 34111, 34112, 34152, 34153, 34157, 34159, 34166, 34167, 34170, 34175, 34180, 34185, 34223, 34229, 34237, 34248, 34255, 34266, 34273, 34284, 34302, 34306, 34335, 34338, 34345, 34348, 34472, 34476, 34513, 34519, 34576, 34581, 34742, 34746, 34778, 34783, 34784, 34787, 34791, 34792, 35062, 35066, 35143, 35149, 35179, 35184, 35282, 35286, 35383, 35389, 35392, 35396, 35413, 35419, 35476, 35481, 35602, 35606, 35635, 35638, 35645, 35648, 35822, 35826, 35833, 35839, 35854, 35855, 35864, 35865, 35872, 35881, 35932, 35936, 35953, 35960, 36052, 36055, 36056, 36062, 36172, 36173, 36177, 36179, 36182, 36187, 36232, 36236, 36253, 36260, 36322, 36326, 36333, 36339, 36354, 36355, 36364, 36365, 36372, 36381, 36502, 36506, 36535, 36538, 36545, 36548, 36713, 36719, 36776, 36781, 37082, 37086, 37163, 37169, 37293, 37299, 37442, 37446, 37478, 37483, 37484, 37487, 37491, 37492, 37613, 37619, 37676, 37681, 37802, 37806, 37835, 37838, 37845, 37848, 37923, 37929, 37937, 37948, 37955, 37966, 37973, 37984, 38072, 38076, 38127, 38130, 38252, 38255, 38256, 38262, 38307, 38311, 38312, 38352, 38353, 38357, 38359, 38366, 38367, 38370, 38375, 38380, 38385, 38522, 38526, 38533, 38539, 38554, 38555, 38564, 38565, 38572, 38581, 38702, 38706, 38735, 38738, 38745, 38748, 39027, 39030, 39272, 39273, 39277, 39279, 39282, 39287, 39352, 39355, 39356, 39362, 39532, 39536, 39553, 39560, 39723, 39729, 39737, 39748, 39755, 39766, 39773, 39784
Take for example, the first member of the above series of numbers:
27675 --> 27690 --> 27684 --> 27675
Here (27675, 27690, 27684) forms a vortex while the individual members (27675, 27690 and 27684) are vorticals. If a number is not an attractor or a vortical then it will captured either by an attractor or a vortex. For example, 27676 is captured by the vortex just mentioned:
27676 --> 27680 --> 27675 --> 27690 --> 27684 --> 27675
On the other hand, 27659 is captured by the attractor 27658:
27659 --> 27658 --> 27658
I've now included in my multipurpose algorithm the trajectory of a number under the prime and non-prime algorithm.
No comments:
Post a Comment