My diurnal age today is 27617 and the second interesting property that I discovered about this number (my first being that it's prime) was the fact that:21+71+61+11+71=2322+72+62+12+72=13923+73+63+13+73=911
A176179: primes such that the sum of digits, the sum of the squares of digits and the sum of 3rd powers of their digits is also a prime.
In the range up to 40,000, there are 322 numbers that are members of this sequence. They are:
11, 101, 113, 131, 199, 223, 311, 337, 353, 373, 449, 461, 463, 641, 643, 661, 733, 829, 883, 919, 991, 1013, 1031, 1103, 1301, 1439, 1451, 1471, 1493, 1499, 1697, 1741, 1949, 2089, 2111, 2203, 2333, 2441, 2557, 3011, 3037, 3307, 3323, 3347, 3491, 3583, 3637, 3659, 3673, 3853, 4049, 4111, 4139, 4241, 4337, 4373, 4391, 4409, 4421, 4481, 4603, 4663, 4733, 4919, 4931, 5303, 5503, 5527, 5639, 5693, 6043, 6197, 6337, 6359, 6373, 6719, 6733, 6791, 6917, 6971, 7411, 7433, 7691, 8209, 8353, 8803, 8887, 9091, 9109, 9341, 9413, 9419, 9431, 9491, 9901, 9941, 10099, 10103, 10141, 10211, 10301, 10499, 10909, 10949, 11003, 11047, 11113, 11117, 11131, 11159, 11171, 11173, 11243, 11261, 11311, 11317, 11399, 11423, 11443, 11489, 11519, 11621, 11731, 11777, 11821, 11939, 12011, 12101, 12143, 12161, 12211, 12347, 12413, 12437, 12451, 12473, 12541, 12583, 12611, 12743, 12853, 13001, 13049, 13171, 13241, 13313, 13331, 13339, 13421, 13441, 13487, 13711, 13933, 14011, 14051, 14071, 14107, 14143, 14251, 14321, 14327, 14341, 14387, 14431, 14543, 14549, 14723, 14783, 14891, 15241, 15401, 15443, 15823, 16097, 16361, 16631, 17041, 17401, 17483, 17609, 17627, 17977, 18121, 18149, 18211, 18253, 18523, 18743, 19009, 19139, 19319, 19333, 19391, 19403, 19777, 19841, 19913, 20023, 20089, 20333, 20441, 20809, 21011, 21101, 21121, 21143, 21211, 21341, 21347, 21611, 21767, 22003, 22027, 22111, 22229, 22447, 22481, 22483, 23417, 23581, 23741, 24113, 24137, 24151, 24247, 24281, 24317, 24371, 24443, 24821, 24977, 25057, 25183, 25253, 25411, 25453, 25523, 25583, 25589, 26111, 26177, 26399, 26717, 26993, 27143, 27431, 27479, 27527, 27617, 27749, 27947, 28111, 28351, 28513, 28559, 29989, 30011, 30307, 30323, 30347, 30367, 30491, 30637, 30703, 30763, 30853, 30941, 31247, 31333, 31393, 31847, 31991, 32141, 32303, 32411, 32969, 33023, 33113, 33203, 33311, 33331, 33353, 33391, 33533, 33863, 33931, 34019, 34127, 34141, 34211, 34217, 34439, 34703, 34721, 34781, 34871, 35069, 35083, 35281, 35803, 36037, 36073, 36161, 36299, 36307, 36383, 36389, 36697, 36833, 36929, 37003, 38053, 38639, 38693, 39041, 39119, 39133, 39191, 39313, 39443, 39667, 39863
However, 27617 has an even more exclusive claim to fame as shown below where the rightmost numbers represent digit sums. Here it is:276171=27617→23276172=762698689→61276173=21063449694113→53276174=581709290202318721→67276175=16065065467517436117857→101276176=443668913016429033266856769→127276177=12252804370774720611730783389473→131
A131748: minimum prime that raised to the powers from 1 to n produces numbers whose sums of digits are also primes.
In the case of 27617, n=7 and the initial members are: 2, 5, 739, 47, 4229, 2803, 27617, 142589, 108271, 2347283, 1108739, 300776929, 300776929, 14674550173, 92799126239
It would appear that 27617 is the only prime that is a member of both these OEIS sequences.
No comments:
Post a Comment