Monday 13 March 2023

Rectangles and Squares

If we envisage a semiprime that is not a square number as a rectangle then a number like 15 that is equal to 3 x 5 could be represented as shown in Figure 1:


Figure 1: created using Geoboard

The average of 3 and 5 is 4 and a 4 x 4 square has the same perimeter as the 3 x 5 rectangle. Both are 16 units in perimeter. See Figure 2.


Figure 2: created using Geoboard

Though the rectangle and the square have the same perimeter, they have different areas. The rectangle has an area of 15 square units and the square has an area of 16 square units. 16 is a square number and the semiprime 15 is linked to it via its two prime factors:$$\frac{3 +5}{2} \times 4 = 16$$The square number divided by 4 gives the side of the associated square. Not every semiprime can be linked to square number in this way. Take 33 with prime factors of 3 and 11 as an example:$$\frac{3 +11}{2} \times 4 = 28$$In general, if a semiprime has two distinct prime factors \(a\) and \(b\), then the condition is that \(2 \times (a+b) \) needs to be a square number. 

In the range up to 40,000, only 172 of the 9790 semiprimes qualify (permalink). Here is the list:
15, 65, 77, 87, 141, 247, 301, 335, 481, 589, 591, 671, 717, 767, 785, 1007, 1167, 1247, 1271, 1351, 1415, 1501, 1527, 1661, 1937, 1967, 2071, 2077, 2157, 2257, 2317, 2391, 2977, 3007, 3047, 3101, 3197, 3215, 3439, 3997, 4061, 4087, 4237, 4385, 4487, 4607, 4829, 4927, 5111, 5777, 6031, 6077, 6161, 6487, 6497, 6541, 6557, 6751, 6927, 7087, 7265, 7341, 7357, 7361, 7967, 8189, 8479, 8557, 9217, 9271, 9287, 9517, 9991, 10077, 10157, 10231, 10727, 11041, 11327, 12209, 12687, 12877, 12989, 13511, 13847, 14317, 14397, 15007, 15185, 15917, 16081, 16397, 16769, 16897, 16957, 17711, 17951, 18141, 18157, 18527, 18807, 19117, 19127, 19367, 19511, 19679, 19741, 19757, 20017, 20191, 20567, 20687, 20711, 20877, 21041, 21421, 21697, 23015, 23231, 23377, 23389, 23729, 23839, 24727, 24737, 24887, 24961, 25341, 25661, 25837, 25967, 25985, 26797, 26909, 27341, 27661, 28247, 28417, 29047, 29135, 29431, 30237, 30311, 30461, 30847, 31597, 31681, 32047, 32551, 32567, 32847, 33527, 34207, 34241, 34647, 34951, 35249, 35741, 35807, 36077, 36391, 36737, 37327, 37437, 37777, 38081, 38191, 38407, 38551, 38687, 39421, 39665
Let's test the second member of the sequence, 65, with factors of 5 and 13. We see that:$$2 \times (5+13)=36$$The associated square has a side of 9 units. However, different semiprimes can produce the same square number. Take the semiprime 77 with prime factors of 7 and 11 as an example: $$2 \times (7+11)=36$$See Figure 3 where the two rectangles associated with the two different semiprimes are shown together with the associated square.


Figure 3: created using Geoboard

If we want to work backwards from the square numbers to the semiprimes, then it's a question of dividing the square number by 2 and partitioning the resultant number into two parts such that each is prime. The results (permalink) are shown in the table below with only those semiprimes up to 40,000 displayed. The algorithm is easily modified so as to remove this filter and show all semiprimes associated with square numbers up and including 40,000.

square   half-square   rectangle    semiprime

  16       8             [5, 3]       15
  36       18            [13, 5]      65
  36       18            [11, 7]      77
  64       32            [29, 3]      87
  64       32            [19, 13]     247
  100      50            [47, 3]      141
  100      50            [43, 7]      301
  100      50            [37, 13]     481
  100      50            [31, 19]     589
  144      72            [67, 5]      335
  144      72            [61, 11]     671
  144      72            [59, 13]     767
  144      72            [53, 19]     1007
  144      72            [43, 29]     1247
  144      72            [41, 31]     1271
  196      98            [79, 19]     1501
  196      98            [67, 31]     2077
  196      98            [61, 37]     2257
  256      128           [109, 19]    2071
  256      128           [97, 31]     3007
  256      128           [67, 61]     4087
  324      162           [157, 5]     785
  324      162           [151, 11]    1661
  324      162           [149, 13]    1937
  324      162           [139, 23]    3197
  324      162           [131, 31]    4061
  324      162           [109, 53]    5777
  324      162           [103, 59]    6077
  324      162           [101, 61]    6161
  324      162           [89, 73]     6497
  324      162           [83, 79]     6557
  400      200           [197, 3]     591
  400      200           [193, 7]     1351
  400      200           [181, 19]    3439
  400      200           [163, 37]    6031
  400      200           [157, 43]    6751
  400      200           [139, 61]    8479
  400      200           [127, 73]    9271
  400      200           [103, 97]    9991
  484      242           [239, 3]     717
  484      242           [229, 13]    2977
  484      242           [223, 19]    4237
  484      242           [211, 31]    6541
  484      242           [199, 43]    8557
  484      242           [181, 61]    11041
  484      242           [163, 79]    12877
  484      242           [139, 103]   14317
  576      288           [283, 5]     1415
  576      288           [281, 7]     1967
  576      288           [277, 11]    3047
  576      288           [271, 17]    4607
  576      288           [269, 19]    5111
  576      288           [257, 31]    7967
  576      288           [251, 37]    9287
  576      288           [241, 47]    11327
  576      288           [229, 59]    13511
  576      288           [227, 61]    13847
  576      288           [199, 89]    17711
  576      288           [191, 97]    18527
  576      288           [181, 107]   19367
  576      288           [179, 109]   19511
  576      288           [157, 131]   20567
  576      288           [151, 137]   20687
  576      288           [149, 139]   20711
  676      338           [331, 7]     2317
  676      338           [307, 31]    9517
  676      338           [277, 61]    16897
  676      338           [271, 67]    18157
  676      338           [241, 97]    23377
  676      338           [229, 109]   24961
  676      338           [211, 127]   26797
  676      338           [199, 139]   27661
  676      338           [181, 157]   28417
  784      392           [389, 3]     1167
  784      392           [379, 13]    4927
  784      392           [373, 19]    7087
  784      392           [349, 43]    15007
  784      392           [331, 61]    20191
  784      392           [313, 79]    24727
  784      392           [283, 109]   30847
  784      392           [241, 151]   36391
  784      392           [229, 163]   37327
  784      392           [211, 181]   38191
  784      392           [199, 193]   38407
  900      450           [443, 7]     3101
  900      450           [439, 11]    4829
  900      450           [433, 17]    7361
  900      450           [431, 19]    8189
  900      450           [421, 29]    12209
  900      450           [419, 31]    12989
  900      450           [409, 41]    16769
  900      450           [397, 53]    21041
  900      450           [389, 61]    23729
  900      450           [383, 67]    25661
  900      450           [379, 71]    26909
  900      450           [367, 83]    30461
  900      450           [353, 97]    34241
  900      450           [349, 101]   35249
  900      450           [347, 103]   35741
  900      450           [337, 113]   38081
  1024     512           [509, 3]     1527
  1024     512           [499, 13]    6487
  1024     512           [439, 73]    32047
  1024     512           [433, 79]    34207
  1156     578           [571, 7]     3997
  1156     578           [547, 31]    16957
  1156     578           [541, 37]    20017
  1156     578           [499, 79]    39421
  1296     648           [643, 5]     3215
  1296     648           [641, 7]     4487
  1296     648           [631, 17]    10727
  1296     648           [619, 29]    17951
  1296     648           [617, 31]    19127
  1296     648           [607, 41]    24887
  1296     648           [601, 47]    28247
  1296     648           [587, 61]    35807
  1444     722           [719, 3]     2157
  1444     722           [709, 13]    9217
  1444     722           [691, 31]    21421
  1600     800           [797, 3]     2391
  1600     800           [787, 13]    10231
  1600     800           [769, 31]    23839
  1600     800           [757, 43]    32551
  1764     882           [877, 5]     4385
  1764     882           [863, 19]    16397
  1764     882           [859, 23]    19757
  1764     882           [853, 29]    24737
  1764     882           [839, 43]    36077
  1936     968           [937, 31]    29047
  2116     1058          [1051, 7]    7357
  2116     1058          [1039, 19]   19741
  2116     1058          [1021, 37]   37777
  2304     1152          [1129, 23]   25967
  2304     1152          [1123, 29]   32567
  2500     1250          [1237, 13]   16081
  2500     1250          [1231, 19]   23389
  2916     1458          [1453, 5]    7265
  2916     1458          [1451, 7]    10157
  2916     1458          [1447, 11]   15917
  2916     1458          [1439, 19]   27341
  3136     1568          [1549, 19]   29431
  3364     1682          [1669, 13]   21697
  3364     1682          [1663, 19]   31597
  3600     1800          [1789, 11]   19679
  3600     1800          [1787, 13]   23231
  3600     1800          [1783, 17]   30311
  4096     2048          [2029, 19]   38551
  4356     2178          [2161, 17]   36737
  4624     2312          [2309, 3]    6927
  4900     2450          [2447, 3]    7341
  4900     2450          [2437, 13]   31681
  5184     2592          [2579, 13]   33527
  5476     2738          [2731, 7]    19117
  6084     3042          [3037, 5]    15185
  6724     3362          [3359, 3]    10077
  7056     3528          [3517, 11]   38687
  7396     3698          [3691, 7]    25837
  8464     4232          [4229, 3]    12687
  9216     4608          [4603, 5]    23015
  9604     4802          [4799, 3]    14397
  10000    5000          [4993, 7]    34951
  10404    5202          [5197, 5]    25985
  11664    5832          [5827, 5]    29135
  12100    6050          [6047, 3]    18141
  12544    6272          [6269, 3]    18807
  13924    6962          [6959, 3]    20877
  15876    7938          [7933, 5]    39665
  16900    8450          [8447, 3]    25341
  20164    10082         [10079, 3]   30237
  21904    10952         [10949, 3]   32847
  23104    11552         [11549, 3]   34647
  24964    12482         [12479, 3]   37437

One could extend this idea to sphenic numbers and three dimensions. Each sphenic number can be interpreted as a brick or rectangular prism. What sphenic numbers have surface areas that are the same as that of cubes with integer sides? The list of such sphenic numbers is shown in the table below (permalink):

sphenic   factors         SA      cube side   SA

  374       2 * 11 * 17     486     9           486
  710       2 * 5 * 71      1014    13          1014
  3110      2 * 5 * 311     4374    27          4374
  3590      2 * 5 * 359     5046    29          5046
  4454      2 * 17 * 131    5046    29          5046
  6182      2 * 11 * 281    7350    35          7350
  7190      2 * 5 * 719     10086   41          10086
  8911      7 * 19 * 67     3750    25          3750
  9494      2 * 47 * 101    10086   41          10086
  10502     2 * 59 * 89     11094   43          11094
  10507     7 * 19 * 79     4374    27          4374
  11798     2 * 17 * 347    13254   47          13254
  18518     2 * 47 * 197    19494   57          19494
  18854     2 * 11 * 857    22326   61          22326
  20390     2 * 5 * 2039    28566   69          28566
  24134     2 * 11 * 1097   28566   69          28566
  27559     7 * 31 * 127    10086   41          10086

No comments:

Post a Comment