I've written about the Collatz Trajectory or the \(3x+1\) Problem previously in the following posts:
- The \(3x+1\) Problem on November 1st 2016
- The Collatz Conjecture Revisited on March 15th 2018
- The \(17x+1\) Map on March 18th 2018
- The Primelatz Conjecture on August 25th 2019
- The Esucarys Mapping on February 15th 2021
- Patterns in Collatz Trajectories on April 3rd 2021
A006877 | In the '3x+1' problem, these values for the starting value set new records for number of steps to reach 1. |
1, 2, 3, 6, 7, 9, 18, 25, 27, 54, 73, 97, 129, 171, 231, 313, 327, 649, 703, 871, 1161, 2223, 2463, 2919, 3711, 6171, 10971, 13255, 17647, 23529, 26623, 34239, 35655, 52527, 77031, 106239, 142587, 156159, 216367, 230631, 410011, 511935, 626331, 837799, ...
26623, 79870, 39935, 119806, 59903, 179710, 89855, 269566, 134783, 404350, 202175, 606526, 303263, 909790, 454895, 1364686, 682343, 2047030, 1023515, 3070546, 1535273, 4605820, 2302910, 1151455, 3454366, 1727183, 5181550, 2590775, 7772326, 3886163, 11658490, 5829245, 17487736, 8743868, 4371934, 2185967, 6557902, 3278951, 9836854, 4918427, 14755282, 7377641, 22132924, 11066462, 5533231, 16599694, 8299847, 24899542, 12449771, 37349314, 18674657, 56023972, 28011986, 14005993, 42017980, 21008990, 10504495, 31513486, 15756743, 47270230, 23635115, 70905346, 35452673, 106358020, 53179010, 26589505, 79768516, 39884258, 19942129, 59826388, 29913194, 14956597, 44869792, 22434896, 11217448, 5608724, 2804362, 1402181, 4206544, 2103272, 1051636, 525818, 262909, 788728, 394364, 197182, 98591, 295774, 147887, 443662, 221831, 665494, 332747, 998242, 499121, 1497364, 748682, 374341, 1123024, 561512, 280756, 140378, 70189, 210568, 105284, 52642, 26321, 78964, 39482, 19741, 59224, 29612, 14806, 7403, 22210, 11105, 33316, 16658, 8329, 24988, 12494, 6247, 18742, 9371, 28114, 14057, 42172, 21086, 10543, 31630, 15815, 47446, 23723, 71170, 35585, 106756, 53378, 26689, 80068, 40034, 20017, 60052, 30026, 15013, 45040, 22520, 11260, 5630, 2815, 8446, 4223, 12670, 6335, 19006, 9503, 28510, 14255, 42766, 21383, 64150, 32075, 96226, 48113, 144340, 72170, 36085, 108256, 54128, 27064, 13532, 6766, 3383, 10150, 5075, 15226, 7613, 22840, 11420, 5710, 2855, 8566, 4283, 12850, 6425, 19276, 9638, 4819, 14458, 7229, 21688, 10844, 5422, 2711, 8134, 4067, 12202, 6101, 18304, 9152, 4576, 2288, 1144, 572, 286, 143, 430, 215, 646, 323, 970, 485, 1456, 728, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1
The number marked in bold in the trajectory (106358020) above is the highest value attained and this too sets a new Collatz trajectory record:
A006884 | In the '3x+1' problem, these values for the starting value set new records for highest point of trajectory before reaching 1. |
1, 2, 3, 7, 15, 27, 255, 447, 639, 703, 1819, 4255, 4591, 9663, 20895, 26623, 31911, 60975, 77671, 113383, 138367, 159487, 270271, 665215, 704511, 1042431, 1212415, 1441407, 1875711, 1988859, 2643183, 2684647, 3041127, 3873535, 4637979, 5656191
Figure 1 shows a plot of the 307 values from 26623 to 1:
Figure 1 |
No comments:
Post a Comment