The number 26599 is, amongst other things, a 3-Lehmer number which means that:
Another point is that every
The existence of a composite 1-Lehmer number (usually simply called Lehmer number) is still an open problem and several results have been proved about these numbers (which probably do not exist). For example, Cohen and Hagis have proved that such a number, if it exists, must be greater thanand be the product of at least 14 primes.
So that takes us to 2-Lehmer numbers or numbers such that:
561, 1105, 1729, 2465, 6601, 8481, 12801, 15841, 16705, 19345, 22321, 30889, 41041, 46657, 50881, 52633, 71905, 75361, 88561, 93961, 115921, 126673, 162401, 172081, 193249, 247105, 334153, 340561, 378561, 449065, 460801, 574561, 656601, 658801, 670033, 930385
The 3-Lehmer numbers or numbers such that:
15, 85, 91, 133, 247, 259, 481, 703, 949, 1111, 1891, 2071, 2701, 2821, 3097, 3145, 3277, 4033, 4141, 4369, 4681, 5461, 5611, 5713, 6031, 7081, 7957, 8911, 9211, 9265, 10585, 11041, 11305, 12403, 13333, 13741, 13981, 14089, 14701, 14833, 15181, 16021, 16441, 16745, 17767, 18721, 22261, 23001, 24661, 25351, 26599, 27331, 29341, 31417, 31609, 31621, 34861, 35371, 35881, 36661, 37969, 38503, 39865
Numbers Aplenty has a table of the smallest numbers for values of
Figure 1 |
Up to 40,000, the Lehmer numbers, for all values of
15, 51, 85, 91, 133, 247, 255, 259, 435, 451, 481, 511, 561, 595, 679, 703, 763, 771, 949, 1105, 1111, 1141, 1261, 1285, 1351, 1387, 1417, 1615, 1695, 1729, 1843, 1891, 2047, 2071, 2091, 2119, 2431, 2465, 2509, 2701, 2761, 2821, 2955, 3031, 3097, 3145, 3277, 3367, 3409, 3589, 3655, 3667, 3855, 4033, 4039, 4141, 4369, 4411, 4681, 4795, 4921, 5083, 5151, 5383, 5461, 5551, 5611, 5629, 5713, 6031, 6205, 6331, 6601, 6643, 6735, 7051, 7081, 7141, 7471, 7501, 7735, 7957, 8071, 8119, 8227, 8245, 8401, 8481, 8695, 8827, 8911, 8995, 9061, 9079, 9139, 9211, 9253, 9265, 9367, 9605, 9709, 9919, 9997, 10213, 10291, 10573, 10585, 10795, 10963, 11041, 11155, 11305, 11899, 12403, 12801, 12901, 13021, 13107, 13333, 13651, 13741, 13747, 13855, 13981, 14089, 14491, 14497, 14611, 14701, 14833, 14911, 14989, 15051, 15181, 15211, 15811, 15841, 16021, 16297, 16405, 16441, 16471, 16531, 16705, 16745, 16771, 16861, 17563, 17611, 17733, 17767, 18019, 18031, 18151, 18631, 18721, 18745, 18907, 18967, 19345, 19669, 19951, 20419, 20451, 20595, 20995, 21037, 21349, 21679, 21845, 21907, 21931, 22015, 22261, 22321, 22359, 23001, 23281, 23959, 24199, 24415, 24643, 24661, 24727, 24871, 25123, 25141, 25351, 25669, 26281, 26335, 26467, 26599, 26923, 27223, 27331, 27511, 27721, 28231, 28453, 28645, 28939, 29341, 30481, 30583, 30889, 31171, 31417, 31459, 31609, 31611, 31621, 32215, 32407, 32551, 32691, 33001, 33709, 34441, 34861, 35113, 35371, 35551, 35881, 36091, 36391, 36499, 36661, 36751, 36805, 37231, 37921, 37969, 38165, 38503, 39091, 39403, 39491, 39817, 39831, 39865
Looking at this list, it can be seen that the Lehmer number previous to 26599 was 26467 while the next one is 26923. 26599 was my diurnal age yesterday and so it will more than a year before I see another one. One last point is that every Carmichael number is also a
There may be a link between pseudoprimes and Lehmer numbers that would be interesting to explore.
No comments:
Post a Comment