Thursday, 23 December 2021

26562: A Mid-Millennial Palindrome

Every one hundred days, as I track my diurnal age, a palindromic numbered day comes my way. Today is day 26562. Sometimes, like today's number, I create a post dedicated to the palindrome. I didn't do this for 26462 but prior to that I've posted about:

In the transition from one millennium to another, the gap increases to 110 days e.g. 25952 to 26062. Other posts relating to palindromes include:
Of course, my next palindromic day 26662 will be spectacular but today I'm focused on the less spectacular 26562. Here are some of its properties:

PROPERTY ONE


 A046263

Largest palindromic substring in \(5^n\).                              


26562 makes regular appearances in OEIS A046263, in fact it appears in every 16th term:
1, 5, 5, 5, 6, 5, 6, 8, 9, 9, 656, 828, 414, 22, 515, 757, 878, 939, 26562, 9, 9, 8, 101, 55, 464, 3223, 11611, 969, 252, 626, 515, 656, 696, 44, 26562, 7337, 51915, 75957, 797, 989, 949, 747, 787, 9739379, 86968, 707, 4224, 1001, 929, 646, 26562, 61616, 63336, ...

Here are the powers of \(n\) in which it appears up to 100:

  • \(5^{18}\) = 3814697265625
  • \(5^{34}\) = 582076609134674072265625
  • \(5^{50}\) = 88817841970012523233890533447265625
  • \(5^{66}\) = 13552527156068805425093160010874271392822265625
  • \(5^{82}\) = 2067951531382569187178521730174907133914530277252197265625
  • \(5^{98}\) = 315544362088404722164691426113114491869282574043609201908111572265625
PROPERTY TWO


 A046394



Palindromes with exactly 4 distinct prime factors.                        


Here are the initial members and their factorisations:

  Palindrome   Factorisation

  858          2 * 3 * 11 * 13
  2002         2 * 7 * 11 * 13
  2442         2 * 3 * 11 * 37
  3003         3 * 7 * 11 * 13
  4774         2 * 7 * 11 * 31
  5005         5 * 7 * 11 * 13
  5115         3 * 5 * 11 * 31
  6666         2 * 3 * 11 * 101
  10101        3 * 7 * 13 * 37
  15351        3 * 7 * 17 * 43
  17871        3 * 7 * 23 * 37
  22422        2 * 3 * 37 * 101
  22722        2 * 3 * 7 * 541
  24242        2 * 17 * 23 * 31
  26562        2 * 3 * 19 * 233
  26962        2 * 13 * 17 * 61
  28482        2 * 3 * 47 * 101
  35853        3 * 17 * 19 * 37
  36363        3 * 17 * 23 * 31

PROPERTY THREE


 A045960

Palindromic even lucky numbers.                                        


The initial members are:
2, 4, 6, 22, 44, 212, 262, 282, 434, 474, 646, 666, 818, 838, 868, 2442, 2662, 2772, 4884, 4994, 6666, 6886, 8118, 8338, 20202, 20402, 21012, 21812, 22322, 22422, 22922, 23332, 23532, 24042, 25652, 26162, 26262, 26562, 26762, 27372, 28682, 40204, 40804

Figure 1 reminds us what even lucky numbers are:

Figure 1: source

PROPERTY FOUR


 A317976

a(n) = 2(a(n-1)+a(n-2)+a(n-3))-a(n-4) for n >= 4, with initial terms 0,0,1,0.

The terms quickly increase in size and the initial terms are:

0, 0, 1, 0, 2, 6, 15, 46, 132, 380, 1101, 3180, 9190, 26562, 76763, 221850, 641160, 1852984, 5355225, 15476888, 44729034, 129269310, 373595239, 1079710278, 3120420620, 9018182964, 26063032485, 75323561860, 217689133998, 629133273722, 1818228906675, 5254779066930, 15186593360656, 43890069394800, 126844654738097

The generating function for these terms is:$$ \frac{x^2(1 - 2x) }{1 - 2x - 2x^2 - 2x^3 + x^4}$$PROPERTY FIVE


 A261924

Numbers that are the sum of two palindromes of the same length.             

In the case of 26562, there are 21 such palindromic pairs:
  • (16561, 10001)
  • (16461, 10101)
  • (16361, 10201)
  • (16261, 10301)
  • (16161, 10401)
  • (16061, 10501)
  • (15551, 11011)
  • (15451, 11111)
  • (15351, 11211)
  • (15251, 11311)
  • (15151, 11411)
  • (15051, 11511)
  • (14541, 12021)
  • (14441, 12121)
  • (14341, 12221)
  • (14241, 12321)
  • (14141, 12421)
  • (14041, 12521)
  • (13531, 13031)
  • (13431, 13131)
  • (13331, 13231)
The pair (13431, 13131) is of particular interest because its members share no digits in common with their addend 26562.


So the wait is on now for my next palindromic day, 26662, which interestingly falls on Saturday, April 2nd 2022, the day before my 73rd birthday. However, my 73rd Solar Return  occurs at 8:34pm on April 2nd. My birthday will thus occur on a Sunday just as on the day I was born. The 666 sequence of numbers will span ten days:

26660, 26661, 26662, 26663 (birthday), 26664, 26665, 26666, 26667, 26668, 26669

While on the subject of palindromes, I came across a tweet that I'd posted on a very special day. See Figure 2. The date was Thursday, February 4th 2010, almost 12 years ago. It's hard to read but on that date I was 22,222 days old.


Figure 2

No comments:

Post a Comment