The first Duffinian numbers up to 247 are:
4, 8, 9, 16, 21, 25, 27, 32, 35, 36, 39, 49, 50, 55, 57, 63, 64, 65, 75, 77, 81, 85, 93, 98, 100, 111, 115, 119, 121, 125, 128, 129, 133, 143, 144, 155, 161, 169, 171, 175, 183, 185, 187, 189, 201, 203, 205, 209, 215, 217, 219, 221, 225, 235, 237, 242, 243, 245, 247Since there are 59 numbers listed above, their density is 59/247 or nearly 24%. Thus they are more common than the prime numbers that occur with a frequency of around 18% in the same interval. There is an infinity of such numbers. As explained in Numbers Aplenty:
Any number of the formOf course, every primewhere is prime and is Duffinian, since cannot be divisible by .
Numbers Aplenty goes on to say that:
P. Heichelheim proved that there exists a run of five consecutive Duffinian numbers starting at 202605639573839041, and that there cannot exist a longer such run.
Rose Mary Zbiek has proved that every even Duffinian number is either a square or twice a square.
The smallest 3 × 3 magic square whose entries are consecutive Duffinian numbers is:
It's a simple enough matter in SAGE to determine whether or not a number is Duffinian. Here is the code (with "gcd" standing for "greatest common divisor"):
number=25387The input 25387 produces the output: 25387 is Duffinian
if gcd(number,sigma(number,1))==1:
print number, "is Duffinian"
else:
print number, "is not Duffinian"
No comments:
Post a Comment