I need to make more use of AI in my blog posts and to this end I wanted to replace the jagged lines in Figure 3 of my previous post with one continuous smooth line. The graph in question looked as shown in Figure 1 below:
![]() |
Figure 1 |
[(395, 480), (396, 1092), (397, 398), (398, 600), (399, 640), (400, 961), (401, 402), (402, 816), (403, 448), (404, 714), (405, 726), (406, 720), (407, 456), (408, 1080), (409, 410), (410, 756), (411, 552), (412, 728), (413, 480), (414, 936), (415, 504), (416, 882), (417, 560), (418, 720), (419, 420), (420, 1344), (421, 422), (422, 636), (423, 624), (424, 810), (425, 558)]
I asked Google Gemini to put a smooth curve through these points and Figure 2 shows what it came up with when I pasted the code into SageMathCell.
![]() |
Figure 2: permalink |
import numpy as npimport matplotlib.pyplot as pltfrom scipy.interpolate import CubicSplinedata = [(395, 480), (396, 1092), (397, 398), (398, 600), (399, 640), (400, 961), (401, 402), (402, 816), (403, 448), (404, 714), (405, 726), (406, 720), (407, 456), (408, 1080), (409, 410), (410, 756), (411, 552), (412, 728), (413, 480), (414, 936), (415, 504), (416, 882), (417, 560), (418, 720), (419, 420), (420, 1344), (421, 422), (422, 636), (423, 624), (424, 810), (425, 558)]# Extract x and y valuesx = [point[0] for point in data]y = [point[1] for point in data]# Create a cubic spline interpolationcs = CubicSpline(x, y)# Generate smoother x values for plotting the curvex_smooth = np.linspace(min(x), max(x), 500) # Adjust 500 for more/less smoothnessy_smooth = cs(x_smooth)# Plot the original points and the smooth curveplt.figure(figsize=(10, 6))plt.plot(x, y, 'o', label='Original Points')plt.plot(x_smooth, y_smooth, '-', label='Smooth Curve (Cubic Spline)')plt.xlabel('X')plt.ylabel('Y')plt.title('Smooth Curve Through Points')plt.legend()plt.grid(True)plt.show()
Explanation:
- Import Libraries:
numpy
for numerical operations (especially for generating smoother x-values).matplotlib.pyplot
for plotting the graph.scipy.interpolate.CubicSpline
for creating the smooth curve.
- Extract Data: The x and y values are extracted from the
data
list into separate lists. - Cubic Spline Interpolation:
CubicSpline(x, y)
creates a cubic spline object that represents the smooth curve passing through the given data points. Cubic splines are chosen as they offer a good balance between smoothness and accuracy.
- Generate Smooth x-Values:
np.linspace(min(x), max(x), 500)
creates an array of 500 evenly spaced x-values between the minimum and maximum x-values of the original data. This is used to generate a smoother curve for plotting. Adjust the 500 for a curve with more or less detail.
- Calculate Smooth y-Values:
cs(x_smooth)
calculates the corresponding y-values for the smoother x-values using the cubic spline interpolation.
- Plotting:
plt.plot(x, y, 'o', label='Original Points')
plots the original data points as circles.plt.plot(x_smooth, y_smooth, '-', label='Smooth Curve (Cubic Spline)')
plots the smooth curve.- The rest of the code sets up the plot's labels, title, legend, and grid.
plt.show()
displays the plot.
- How to Run:
- Make sure you have
numpy
,matplotlib
, andscipy
installed (pip install numpy matplotlib scipy
). - Save the code as a Python file (e.g.,
smooth_curve.py
). - Run the file from your terminal:
python smooth_curve.py
.
- Make sure you have
No comments:
Post a Comment