It's interesting to consider what happens to a sequence if a certain rule is applied but with the stipulation that any zeros arising must be removed. If we start with 1, double it and then double the result and continue this process, we end up with an infinite sequence:
1, 2, 4, 6, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, ...
But what happens once any zeros that arise are removed? Well, nothing until 1024 is reached and it becomes 124, then 248, 496 etc. It turns out that the sequence enters a loop (marked in blue below) that has a period of 36. The minimum value within the loop is 28714 and the largest is 11,772,544. The maximum value reached overall is 765,257,552.
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 124, 248, 496, 992, 1984, 3968, 7936, 15872, 31744, 63488, 126976, 253952, 5794, 11588, 23176, 46352, 9274, 18548, 3796, 7592, 15184, 3368, 6736, 13472, 26944, 53888, 17776, 35552, 7114, 14228, 28456, 56912, 113824, 227648, 455296, 91592, 183184, 366368, 732736, 1465472, 293944, 587888, 1175776, 2351552, 47314, 94628, 189256, 378512, 75724, 151448, 32896, 65792, 131584, 263168, 526336, 152672, 35344, 7688, 15376, 3752, 754, 158, 316, 632, 1264, 2528, 556, 1112, 2224, 4448, 8896, 17792, 35584, 71168, 142336, 284672, 569344, 1138688, 2277376, 4554752, 91954, 18398, 36796, 73592, 147184, 294368, 588736, 1177472, 2354944, 479888, 959776, 1919552, 383914, 767828, 1535656, 371312, 742624, 1485248, 297496, 594992, 1189984, 2379968, 4759936, 9519872, 1939744, 3879488, 7758976, 15517952, 313594, 627188, 1254376, 258752, 51754, 1358, 2716, 5432, 1864, 3728, 7456, 14912, 29824, 59648, 119296, 238592, 477184, 954368, 198736, 397472, 794944, 1589888, 3179776, 6359552, 1271914, 2543828, 587656, 1175312, 235624, 471248, 942496, 1884992, 3769984, 7539968, 1579936, 3159872, 6319744, 12639488, 25278976, 5557952, 1111594, 2223188, 4446376, 8892752, 1778554, 355718, 711436, 1422872, 2845744, 5691488, 11382976, 22765952, 4553194, 916388, 1832776, 3665552, 733114, 1466228, 2932456, 5864912, 11729824, 23459648, 46919296, 93838592, 187677184, 375354368, 7578736, 15157472, 3314944, 6629888, 13259776, 26519552, 533914, 167828, 335656, 671312, 1342624, 2685248, 537496, 174992, 349984, 699968, 1399936, 2799872, 5599744, 11199488, 22398976, 44797952, 8959594, 17919188, 35838376, 71676752, 14335354, 286778, 573556, 1147112, 2294224, 4588448, 9176896, 18353792, 3677584, 7355168, 1471336, 2942672, 5885344, 1177688, 2355376, 471752, 94354, 18878, 37756, 75512, 15124, 3248, 6496, 12992, 25984, 51968, 13936, 27872, 55744, 111488, 222976, 445952, 89194, 178388, 356776, 713552, 142714, 285428, 57856, 115712, 231424, 462848, 925696, 1851392, 372784, 745568, 1491136, 2982272, 5964544, 1192988, 2385976, 4771952, 954394, 198788, 397576, 795152, 15934, 31868, 63736, 127472, 254944, 59888, 119776, 239552, 47914, 95828, 191656, 383312, 766624, 1533248, 366496, 732992, 1465984, 2931968, 5863936, 11727872, 23455744, 46911488, 93822976, 187645952, 37529194, 7558388, 15116776, 3233552, 646714, 1293428, 2586856, 5173712, 1347424, 2694848, 5389696, 1779392, 3558784, 7117568, 14235136, 2847272, 5694544, 1138988, 2277976, 4555952, 911194, 1822388, 3644776, 7289552, 1457914, 2915828, 5831656, 11663312, 23326624, 46653248, 9336496, 18672992, 37345984, 74691968, 149383936, 298767872, 597535744, 119571488, 239142976, 478285952, 95657194, 191314388, 382628776, 765257552, 15351514, 37328, 74656, 149312, 298624, 597248, 1194496, 2388992, 4777984, 9555968, 19111936, 38223872, 76447744, 152895488, 3579976, 7159952, 1431994, 2863988, 5727976, 11455952, 2291194, 4582388, 9164776, 18329552, 3665914, 7331828, 14663656, 29327312, 58654624, 11739248, 23478496, 46956992, 93913984, 187827968, 375655936, 751311872, 152623744, 35247488, 7494976, 14989952, 2997994, 5995988, 11991976, 23983952, 4796794, 9593588, 19187176, 38374352, 7674874, 15349748, 3699496, 7398992, 14797984, 29595968, 59191936, 118383872, 236767744, 473535488, 9477976, 18955952, 3791194, 7582388, 15164776, 3329552, 665914, 1331828, 2663656, 5327312, 1654624, 339248, 678496, 1356992, 2713984, 5427968, 1855936, 3711872, 7423744, 14847488, 29694976, 59389952, 11877994, 23755988, 47511976, 9523952, 194794, 389588, 779176, 1558352, 311674, 623348, 1246696, 2493392, 4986784, 9973568, 19947136, 39894272, 79788544, 15957788, 31915576, 63831152, 12766234, 25532468, 5164936, 1329872, 2659744, 5319488, 1638976, 3277952, 655594, 1311188, 2622376, 5244752, 148954, 29798, 59596, 119192, 238384, 476768, 953536, 19772, 39544, 7988, 15976, 31952, 6394, 12788, 25576, 51152, 1234, 2468, 4936, 9872, 19744, 39488, 78976, 157952, 31594, 63188, 126376, 252752, 5554, 1118, 2236, 4472, 8944, 17888, 35776, 71552, 14314, 28628, 57256, 114512, 22924, 45848, 91696, 183392, 366784, 733568, 1467136, 2934272, 5868544, 1173788, 2347576, 4695152, 93934, 187868, 375736, 751472, 152944, 35888, 71776, 143552, 28714, 57428, 114856, 229712, 459424, 918848, 1837696, 3675392, 735784, 1471568, 2943136, 5886272, 11772544, 2354588, 479176, 958352, 191674, 383348, 766696, 1533392, 366784
This sequence is in fact OEIS A242350:
A242350 | Multiply a(n-1) by 2 and drop all 0's where a(0)=1. |
Figure 1 shows a graph of the sequence with a logarithmic scale for the y axis.
Figure 1: permalink |
Figure 2: permalink |
Figure 3: permalink |
The same thing can be done with the Fibonacci sequence and again a cycle is reached. The 26th term is 7841 and this number is reached again at the 434th term. I won't list all the terms, just those up to 7841 (permalink):
These numbers form OEIS A243063:
A243063 | Numbers generated by a Fibonacci-like sequence in which zeros are suppressed. |
No comments:
Post a Comment