I was exploring the sum of numbers and their reversals and discovered something puzzling. Specifically I was looking at how many numbers and their reversals, when added together, produce a prime number. In the range up to 10, there is only one number and that is 1 because 1+1=2. In the range up to 100, there is 1 and 10 because 10 + 1 = 11. In the range up 1000, there are 139 numbers (and thus 13.91%). They are:
1, 10, 100, 116, 118, 140, 142, 146, 158, 166, 170, 172, 178, 182, 188, 190, 196, 215, 217, 229, 239, 241, 245, 257, 265, 269, 271, 277, 281, 287, 295, 299, 314, 316, 328, 338, 340, 344, 356, 364, 368, 370, 376, 380, 386, 394, 398, 413, 415, 427, 437, 439, 443, 455, 463, 467, 469, 475, 479, 485, 493, 497, 499, 512, 514, 526, 536, 538, 542, 554, 562, 566, 568, 574, 578, 584, 592, 596, 598, 611, 613, 625, 635, 637, 641, 653, 661, 665, 667, 673, 677, 683, 691, 695, 697, 710, 712, 724, 734, 736, 740, 752, 760, 764, 766, 772, 776, 782, 790, 794, 796, 811, 823, 833, 835, 839, 851, 863, 865, 871, 875, 881, 889, 893, 895, 910, 922, 932, 934, 938, 950, 962, 964, 970, 974, 980, 988, 992, 994
However, in the range up to 10,000, there are also 139 numbers which means that no new numbers have been added (after 994, the next number is 10012). I checked and rechecked my algorithm but could find no error. It must mean that no four digit number when added to its reverse can produce a prime number. This is in fact true and can be demonstrated by considering a four digit number
Thus we could summarise: for numbers with
Let's go further and consider the five digit numbers using
No comments:
Post a Comment