Having turned 26506 days old today, my attention was drawn to this OEIS sequence:
A219960 | Numbers which do not reach zero under the repeated iteration \(x \rightarrow \lceil \sqrt{x} \, \rceil \times (\lceil \sqrt{x}\, \rceil ^2 - x) \). |
Figure 1 |
The first members of this sequence are as follows:
366, 680, 691, 1026, 1136, 1298, 1323, 1417, 1464, 1583, 1604, 1702, 2079, 2125, 2222, 2223, 2374, 2507, 2604, 2627, 2821, 2844, 2897, 3152, 3157, 3159, 3183, 3210, 3231, 3459, 3697, 3715, 3762, 3802, 3866, 3888, 3936, 3948, 4004, 4111, 4133, 4145, 4231, 4299, ...
- Conjecture 1: All numbers under the iteration reach 0 or, like the elements of this sequence, reach a finite loop, and none expand indefinitely to infinity.
- Conjecture 2: There are an infinite number of such finite loops, though there is often significant distance between them.
OEIS A219303 refers to the iterative process where the ceiling function is replaced by the floor function. So what happens to 26506 under this iteration? Here is the trajectory:
- Conjecture 3: There are an infinite number of pairs of consecutive integers in this sequence despite being less abundant than in A219303.
26506, 10269, 13770, 18172, 7155, 5950, 10452, 16171, 27264, 48472, 81549, 70642, 30324, 52675, 51750, 53352, 2079, 1702, 2604, 5200, 9417, 18326, 23120, 44217, 64144, 94488, 115808, 161293, 125022, 104076, 81719, 22022, 26671, 36900, 67357, 63180, 81648, 42328, 22248, 37800, 43875, 47250, 59732, 71785, 10452
Figure 2 |
25923, 52002, 100531, 188574, 283185, 481832, 829135, 716046, 1154461, 1251300, 963459, 849430, 602988, 575757, 245916, 49600, 28767, 22610, 28841, 10030, 17271, 20196, 36179, 57682, 96159, 174782, 326401, 447876, 686080, 962469, 1821610, 1201500, 2094173, 3664888, 4475355, 4445716, 4565985, 1675408, 2094015, 3893672, 5929896, 10231200, 7680799, 8828820, 11781008, 15383273, 26111488, 3127320, 3610529, 6220072, 12357735, 15895836, 1327671, 2003914, 1617072, 1160064, 2177560, 1499616, 1236025, 577128, 358720, 48519, 71162, 33909, 58460, 25168, 17967, 34830, 25993, 40662, 28684, 36720, 27648, 40247, 30954, 3872, 6111, 10270, 13668, 2457, 2150, 2773, 1908, 1232, 2304, 0Figure 3 shows the trajectory of 25923 using a log scale for the vertical axis.
Figure 3 |
Figure 4 |
35727, 70870, 111873, 117920, 143104, 203523, 353012, 602735, 772338, 266337, 492184, 435240, 237600, 265472, 404544, 780325, 999804, 196000, 110307, 193806, 297675, 240786, 144845, 120396, 4511, 7684, 5280, 3577, 1380, 2432, 3400, 4779, 8470, 16647, 32890, 42588, 54027, 61046, 113584, 223080, 306977, 581640, 403627, 552684, 633888, 1052837, 1943084, 211888, 291813, 469588, 691488, 612352, 577071, 402040, 752475, 823732, 664656, 979200, 891000, 128384, 178423, 214038, 153253, 161112, 197784, 107245, 111192, 121576, 78525, 122516, 240435, 317186, 513240, 608733, 959068, 1305360, 1244727, 813564, 36080, 3800, 2728, 4293, 4158, 4355, 66, 135, 108, 143, 12, 16, 0
Here is the permalink for this calculation. Note that the penultimate number in the trajectory is 16 which is a square number (\(4^2\)), just as the penultimate number for the previous record trajectory was 2304, also a square number (\(48^2\)). Clearly, it is only when a square number is reached in the trajectory that a result of zero will arise in the next iteration. However, in the case of over 98% of numbers (at least in the range up to 26506), the trajectory does not terminate at zero but instead enters a loop.
Conjecture 3, included earlier, states that "there are an infinite number of pairs of consecutive integers" so let's investigate this further. In the range up to 26506, the following pairs occur:
- 2222 2223
- 8399 8400
- 11457 11458
- 12950 12951
- 19005 19006
- 19847 19848
- 22444 22445
- 23597 23598
- 25089 25090
- 25175 25176
- 25742 25743
No comments:
Post a Comment