I came across an interesting video on YouTube by Michael Penn in which he investigates an interesting property of prime numbers, namely that if
![]() |
Figure 1 |
Thus we can write
I came across an interesting video on YouTube by Michael Penn in which he investigates an interesting property of prime numbers, namely that if
![]() |
Figure 1 |
Having turned 26506 days old today, my attention was drawn to this OEIS sequence:
A219960 | Numbers which do not reach zero under the repeated iteration |
![]() |
Figure 1 |
366, 680, 691, 1026, 1136, 1298, 1323, 1417, 1464, 1583, 1604, 1702, 2079, 2125, 2222, 2223, 2374, 2507, 2604, 2627, 2821, 2844, 2897, 3152, 3157, 3159, 3183, 3210, 3231, 3459, 3697, 3715, 3762, 3802, 3866, 3888, 3936, 3948, 4004, 4111, 4133, 4145, 4231, 4299, ...
- Conjecture 1: All numbers under the iteration reach 0 or, like the elements of this sequence, reach a finite loop, and none expand indefinitely to infinity.
- Conjecture 2: There are an infinite number of such finite loops, though there is often significant distance between them.
OEIS A219303 refers to the iterative process where the ceiling function is replaced by the floor function. So what happens to 26506 under this iteration? Here is the trajectory:
- Conjecture 3: There are an infinite number of pairs of consecutive integers in this sequence despite being less abundant than in A219303.
26506, 10269, 13770, 18172, 7155, 5950, 10452, 16171, 27264, 48472, 81549, 70642, 30324, 52675, 51750, 53352, 2079, 1702, 2604, 5200, 9417, 18326, 23120, 44217, 64144, 94488, 115808, 161293, 125022, 104076, 81719, 22022, 26671, 36900, 67357, 63180, 81648, 42328, 22248, 37800, 43875, 47250, 59732, 71785, 10452
![]() |
Figure 2 |
25923, 52002, 100531, 188574, 283185, 481832, 829135, 716046, 1154461, 1251300, 963459, 849430, 602988, 575757, 245916, 49600, 28767, 22610, 28841, 10030, 17271, 20196, 36179, 57682, 96159, 174782, 326401, 447876, 686080, 962469, 1821610, 1201500, 2094173, 3664888, 4475355, 4445716, 4565985, 1675408, 2094015, 3893672, 5929896, 10231200, 7680799, 8828820, 11781008, 15383273, 26111488, 3127320, 3610529, 6220072, 12357735, 15895836, 1327671, 2003914, 1617072, 1160064, 2177560, 1499616, 1236025, 577128, 358720, 48519, 71162, 33909, 58460, 25168, 17967, 34830, 25993, 40662, 28684, 36720, 27648, 40247, 30954, 3872, 6111, 10270, 13668, 2457, 2150, 2773, 1908, 1232, 2304, 0Figure 3 shows the trajectory of 25923 using a log scale for the vertical axis.
![]() |
Figure 3 |
![]() |
Figure 4 |
35727, 70870, 111873, 117920, 143104, 203523, 353012, 602735, 772338, 266337, 492184, 435240, 237600, 265472, 404544, 780325, 999804, 196000, 110307, 193806, 297675, 240786, 144845, 120396, 4511, 7684, 5280, 3577, 1380, 2432, 3400, 4779, 8470, 16647, 32890, 42588, 54027, 61046, 113584, 223080, 306977, 581640, 403627, 552684, 633888, 1052837, 1943084, 211888, 291813, 469588, 691488, 612352, 577071, 402040, 752475, 823732, 664656, 979200, 891000, 128384, 178423, 214038, 153253, 161112, 197784, 107245, 111192, 121576, 78525, 122516, 240435, 317186, 513240, 608733, 959068, 1305360, 1244727, 813564, 36080, 3800, 2728, 4293, 4158, 4355, 66, 135, 108, 143, 12, 16, 0
Here is the permalink for this calculation. Note that the penultimate number in the trajectory is 16 which is a square number (
Conjecture 3, included earlier, states that "there are an infinite number of pairs of consecutive integers" so let's investigate this further. In the range up to 26506, the following pairs occur:
Time to return to integrals for a while and practice my LaTeX skills. I came across an interesting video on YouTube recently that investigated the following integral:
![]() |
Figure 1 |
![]() |
Figure 2 |
![]() |
Figure 3 |
![]() |
Figure 4 |
Yesterday marked a milestone of sorts. I reached a diurnal age of 26500, a somewhat unremarkable number commemorated with the tweet shown in Figure 1.
![]() |
Figure 1 |
![]() |
Figure 2 |
![]() |
Figure 3 |
![]() |
Figure 4 |
The self-governing province of the Åland Islands lies off the southwest coast of Finland. Åland is an autonomous, demilitarised, Swedish-speaking region of Finland. Åland consists of more than 6,700 islands, but the current population of over 30,000 live on only 60 islands. Source.
The increase in the number of students inside Midland ISD compared to the start of the previous school year will top 1,000. Superintendent Orlando Riddick said Tuesday the district’s student population appears to not only have eclipsed 25,000 but will end up closer to 25,500. September 2017. Source.
3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, 179, 191, 211, 241, 277, 283, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991, ... (OEIS A006450).
The number associated with my diurnal age today, 26489, is one such super-prime because it is the 421st prime and the number 421 is prime. So what is a super super-prime? Well, this is a terminology of my own invention, but I think it aptly describes numbers such as 26489 that have the following properties:
A331031 | The prime numbers that are prime-indexed primes and whose digit sum, adjacent digit sum concatenation, and adjacent digit difference concatenation are also primes. |
41, 83, 401, 2063, 6863, 10909, 20063, 26489, 44621, 105229, 187067, 205507, 233267, 238547, 240047, 243301, 256307, 346763, 367021, 376003, 395581, 555707, 562181, 563467, 600203, 613243, 644843, 675263, 689789, 785801, 787601, 837667, 845381, 954263, 959389, 1070203, 1089463, 1379029, 1394389, 1550503, 1759489, 1777609, 1868567, 1948603, 1994143, 2002001, 2003321, 2034521, 2071481, 2104547, 2106389, 2184101, 2191529, 2217443, 2231407, 2298389, 2303681, 2312621, 2316203, 2334281, 2342309, 2362163, 2365201, 2387003, 2395747, 2416163, 2458747, 2473067, 2491007, 2501243, 2502767, 2505263, 2578403, 2610701, 2612521, 2629307, 2717129, 2742521, 2775781, 2824447, 2858747, 2877221, 2940521, 2960381, 3030409, 3058201, 3080729, 3161309, 3267067, 3339607, 3429667, 3489007, 3510509, 3528409, 3551881, 3598981, 3623401, 3643403, 3765589, 3775043, 3895981, 4143401, 4169621, 4277263, 4349089, 4364501, 4466443, 4576601, 4615601, 4645181, 4664263, 4928389, 4950409, 4979563, 5010407, 5043881, 5048921, 5049203, 5071103, 5110103, 5115203, 5135621, 5165707, 5297909, 5374307, 5533043, 5533681, 5535281, 5969309, 6000809, 6068443, 6146303, 6246029, 6260629, 6310243, 6345067, 6348781, 6405989, 6525643, 6535163, 6678109, 6740743, 6747421, 6856589, 7014881, 7161103, 7410889, 7415743, 7708009, 7813301, 8030963, 8108921, 8152447, 8207363, 8261381, 8512267, 8618567, 8669981, 8715181, 8720947, 8753707, 8787089, 8846429, 8854981, 8884621, 9061447, 9077521, 9277381, 9297907, 9302467, 9476647, 9792301, 9802343, 9913081, 9972343, 9974509, 9998701, 10013747, 10015903, 10045421, 10067809, 10070201, 10121143, 10180481, 10205207, 10223267, 10246729, 10330367, 10490863, 10500229, 10847621, 10893767, 10990121, 11113547, 11203301, 11228207, 11245547, 11265707, 11310647, 11608489, 11638903, 11725001, 11731963, 11878967, 12004309, 12054403, 12079121, 12382663, 12523909, 12579647, 12867409, 12987103, 13009303, 13162909, 13204847, 13248409, 13474789, 13609963, 13702301, 13836101, 13853263, 13918601, 14306203, 14400707, 14412407, 14504267, 14520403, 14637101, 14833543, 14918509, 15168529, 15230321, 15338801, 15439429, 15471889, 15616967, 15650321, 15944389, 16206103, 16420189, 16509343, 16578103, 16970143, 17046889, 17059843, 17309863, 17533189, 17653243, 18053389, 18223003, 18319243, 18329329, 18486581, 18505181, 18590563, 18665629, 18805667, 18970547, 19721201, 19948363, 19999303, 20132401, 20170421, 20273243, 20314867, 20390221, 20425103
On October 4th of 2021, I turned 26482 days old and noted that the sum of its digits is 22. Now 22 is considered a very powerful number in numerology, along with 11 and 33. Not only do the digits of 26482 add to 22 but the number is "framed" by 22:
26482
Digit sum is 22
If the digits of a number contain the digit 2 exactly twice and if the sum of the digits is a multiple of 22, then we might term such numbers Catch-22 numbers. How many of them are there, up to the one million mark? Well, it turns out not that many. There are 6360 such numbers representing 0.636 percent of the total. The minimum is 2299 and the maximum is 992200. Here is a permalink to the SageMathCell calculation.
Catch-22 numbers
First member is 2299
Digit sum is 22
First member is 2992
Digit sum is 22
2992 = 22 x 136
Here are the 522 Super Catch-22 numbers in the range up to one million:
[2992, 9922, 12298, 12892, 19228, 19822, 22198, 22396, 22594, 22990, 23782, 24772, 25762, 26752, 27742, 28732, 29128, 29326, 29524, 29920, 32296, 32692, 39226, 39622, 42592, 49522, 52294, 52492, 59224, 59422, 62392, 69322, 73282, 74272, 75262, 76252, 77242, 78232, 82192, 89122, 92092, 92290, 99022, 99220, 102982, 108922, 112288, 112882, 118228, 118822, 121792, 122188, 122386, 122584, 122980, 123772, 124762, 125752, 126742, 127732, 128128, 128326, 128524, 128920, 129712, 132286, 132682, 138226, 138622, 142582, 148522, 152284, 152482, 158224, 158422, 162382, 168322, 171292, 173272, 174262, 175252, 176242, 177232, 179212, 182182, 188122, 192082, 192280, 198022, 198220, 200992, 201982, 202378, 202576, 202774, 203962, 204952, 205942, 206932, 207328, 207526, 207724, 208912, 209902, 210298, 210892, 211288, 211882, 212476, 212674, 213268, 213862, 214258, 214852, 215248, 215842, 216238, 216832, 217426, 217624, 218218, 218812, 219208, 219802, 220198, 220396, 220594, 220990, 221188, 221386, 221584, 221980, 223168, 223366, 223564, 223960, 224158, 224356, 224554, 224950, 225148, 225346, 225544, 225940, 226138, 226336, 226534, 226930, 228118, 228316, 228514, 228910, 229108, 229306, 229504, 229900, 230296, 230692, 231286, 231682, 232078, 232474, 232870, 233266, 233662, 234256, 234652, 235246, 235642, 236236, 236632, 237028, 237424, 237820, 238216, 238612, 239206, 239602, 240592, 241582, 242176, 242374, 242770, 243562, 244552, 245542, 246532, 247126, 247324, 247720, 248512, 249502, 250294, 250492, 251284, 251482, 252076, 252670, 253264, 253462, 254254, 254452, 255244, 255442, 256234, 256432, 257026, 257620, 258214, 258412, 259204, 259402, 260392, 261382, 262174, 262570, 263362, 264352, 265342, 266332, 267124, 267520, 268312, 269302, 272074, 272470, 277024, 277420, 280192, 281182, 282370, 283162, 284152, 285142, 286132, 287320, 288112, 289102, 290092, 290290, 291082, 291280, 293062, 293260, 294052, 294250, 295042, 295240, 296032, 296230, 298012, 298210, 299002, 299200, 302962, 306922, 312268, 312862, 316228, 316822, 320782, 321772, 322168, 322366, 322564, 322960, 323752, 324742, 325732, 326128, 326326, 326524, 326920, 327712, 328702, 332266, 332662, 336226, 336622, 342562, 346522, 352264, 352462, 356224, 356422, 362362, 366322, 370282, 371272, 373252, 374242, 375232, 377212, 378202, 382162, 386122, 392062, 392260, 396022, 396220, 402952, 405922, 412258, 412852, 415228, 415822, 420772, 421762, 422158, 422356, 422554, 422950, 423742, 424732, 425128, 425326, 425524, 425920, 426712, 427702, 432256, 432652, 435226, 435622, 442552, 445522, 452254, 452452, 455224, 455422, 462352, 465322, 470272, 471262, 473242, 474232, 476212, 477202, 482152, 485122, 492052, 492250, 495022, 495220, 502942, 504922, 512248, 512842, 514228, 514822, 520762, 521752, 522148, 522346, 522544, 522940, 523732, 524128, 524326, 524524, 524920, 525712, 526702, 532246, 532642, 534226, 534622, 542542, 544522, 552244, 552442, 554224, 554422, 562342, 564322, 570262, 571252, 573232, 575212, 576202, 582142, 584122, 592042, 592240, 594022, 594220, 602932, 603922, 612238, 612832, 613228, 613822, 620752, 621742, 622138, 622336, 622534, 622930, 623128, 623326, 623524, 623920, 624712, 625702, 632236, 632632, 633226, 633622, 642532, 643522, 652234, 652432, 653224, 653422, 662332, 663322, 670252, 671242, 674212, 675202, 682132, 683122, 692032, 692230, 693022, 693220, 702328, 702526, 702724, 712426, 712624, 720742, 721732, 723712, 724702, 732028, 732424, 732820, 742126, 742324, 742720, 752026, 752620, 762124, 762520, 770242, 771232, 772024, 772420, 773212, 774202, 782320, 801922, 802912, 811228, 811822, 812218, 812812, 820732, 821128, 821326, 821524, 821920, 822118, 822316, 822514, 822910, 823702, 831226, 831622, 832216, 832612, 841522, 842512, 851224, 851422, 852214, 852412, 861322, 862312, 870232, 873202, 881122, 882112, 891022, 891220, 892012, 892210, 900922, 902902, 910228, 910822, 912208, 912802, 920128, 920326, 920524, 920920, 921712, 922108, 922306, 922504, 922900, 930226, 930622, 932206, 932602, 940522, 942502, 950224, 950422, 952204, 952402, 960322, 962302, 971212, 980122, 982102, 990022, 990220, 992002, 992200]