Sunday, 28 February 2021

More on Anti-divisors

Back in February of 2016, I made a post about anti-divisors but I've posted nothing about them since. However, I was reminded of them once again because today I turned 26264 days old and one of the properties of this number is that it's a member of OEIS:


 A109351

Numbers whose anti-divisors sum to a perfect cube.   
                

The anti-divisors of 26264 are 3, 16, 112, 784, 1072, 7504 and 17509. My original post explains how anti-divisors are determined so I won't repeat all of that here but essentially:
  • if the anti-divisor \(k\) of the number \(n\) is even then \( n \equiv \displaystyle \frac{k}{2} \mod{k} \)
  • if the anti-divisor \(k\) of the number \(n\) is odd then \( n \equiv \displaystyle \frac{k+1}{2} \mod{k} \text{ or } \displaystyle \frac{k-1}{2} \mod{k} \)
In the case of 26264 and its anti-divisors, we find that:
  • \( 26264 \equiv 2 \mod{3} \text{ and  } 2=\displaystyle \frac{3+1}{2}\)
  • \( 26264 \equiv 8 \mod{16} \text{  and  } 8=\displaystyle \frac{16}{2}\)
  • \( 26264 \equiv 56 \mod{112} \text{  and  } 56=\displaystyle \frac{112}{2} \)
  • \( 26264 \equiv 397 \mod{784} \text{  and  } 397=\displaystyle \frac{784}{2}\)
  • \( 26264 \equiv 536 \mod{1072} \text{  and  } 536=\displaystyle \frac{1072}{2}\)
  • \( 26264 \equiv  3752 \mod{7504} \text{  and  } 3752=\displaystyle \frac{7504}{2}\)
  • \( 26264 \equiv  8755 \mod{17509} \text{  and  } 8755= \displaystyle \frac{17509+1}{2}\)
There are lots of interesting facts about anti-divisors listed on this source:
  • Every integer \(n\) has a largest anti-divisor, and this is at approximately at 2/3rds of \(n\).  
  • Every number has a unique set of anti-divisors. 
  • Anti-primes (integers with only one anti-divisor) are rare and include 3, 4, 6, 96 and 393216. These numbers form OEIS A066466.
  • Anti-perfect numbers are integers such that the sum of its anti-divisors equals the original integers. Figure 1 shows a list of the initial members. 

Figure 1

 The anti-perfect numbers form OEIS A073930:

 
 A073930
   
  Numbers \(n\) such that \(n\) = sum of the anti-divisors of \(n\).      
     

5, 8, 41, 56, 946, 5186, 6874, 8104, 17386, 27024, 84026, 167786, 2667584, 4921776, 27914146, 505235234, 3238952914, 73600829714, 455879783074, 528080296234, 673223621664, 4054397778846, 4437083907194, 4869434608274, 6904301600914, 7738291969456

This extends the list of such numbers shown in Figure 1. 

  • Anti-multiperfect numbers are integers that equals some product of the sum of its anti-divisors. See Figure 2.
Figure 2
  • An anti-amicable pair of numbers are two or more numbers such that the sum of the anti-divisors of one equals another, and then the sum of the anti-divisors of this number equal the original number. The idea here can be extended to form chains of anti-amicable numbers - these can be referred to as anti-sociable numbers. See Figure 3.
Figure 4
  • Some numbers have a large number of anti-divisors. For example, 2139637 has 155 anti-divisors:
2, 3, 5, 7, 9, 11, 13, 15, 19, 21, 25, 33, 34, 35, 39, 45, 53, 55, 57, 63, 65, 75, 77, 86, 91, 95, 99, 105, 117, 133, 143, 165, 171, 175, 195, 209, 225, 231, 247, 263, 273, 275, 285, 307, 315, 325, 385, 399, 429, 455, 475, 495, 525, 585, 627, 665, 693, 715, 741, 819, 825, 855, 975, 1001, 1045, 1155, 1197, 1235, 1287, 1365, 1425, 1462, 1463, 1575, 1729, 1881, 1925, 1995, 2145, 2223, 2275, 2475, 2717, 2925, 3003, 3135, 3325, 3465, 3575, 3705, 4095, 4275, 4389, 5005, 5187, 5225, 5775, 5854, 5985, 6175, 6435, 6825, 7315, 8151, 8645, 9009, 9405, 9975, 10725, 11115, 13167, 13585, 13939, 15015, 15561, 15675, 16271, 17325, 18525, 19019, 20475, 21945, 24453, 25025, 25935, 29925, 32175, 36575, 40755, 43225, 45045, 47025, 55575, 57057, 65835, 67925, 75075, 77805, 80741, 95095, 99518, 109725, 122265, 129675, 171171, 203775, 225225, 251722, 285285, 329175, 389025, 475475, 611325, 855855, 1426425
Figure 5 shows a table of the first few maximally anti-divisible (MAD) natural numbers:


Figure 5

As can be seen the list in Figure 5 is missing some NADs (Number of Anti-Divisors). The full list can be found is OEIS 
 

 A066464

Least number \(k\) such that \(k\) has \(n\) anti-divisors.     

 The full list runs like this where first column is \(n\) and second column is \(k\).

0         1

1         3

2         5

3         7

4         13

5         17

6         32

7         38

8         85

9         67

10     162

11     137

12     338

13     203

14     760

15     247

16     1225

17     472

18     578

19     682

20     1012

21     787

22     9112

23     1463

24     2048

25     2047

26     2888

27     2363

28     5513

29     3465

30     5512

31     6682

32     8978

33     5197

34     17672

35     5198

36     71442

37     9653

38     29768

39     8662

40     40898

41     13513

42     81608

43     15593

44     131072

45     35437

46     49612

47     26163

48     74498

49     22522

50     37538

  • MAD run is a series of MAD numbers such that the NAD (Number of Anti-Divisors) value increases by 2. Figure 5 shows that there is an opening MAD run from 1 to 29 and after this, they become rarer, and almost disappear. Notably 293,295,297,299,301 forms a MAD run of 5.

  • MAD twins are consecutive MAD numbers. Figure 6 shows these:

Figure 6

Most of this content has come from an additional link to the Internet Archive and forms a sort of parallel anti-matter universe to the one that most people are familiar. There are many interesting sequences in the OEIS, some of which are listed above. Here are some more:


 A178029

Numbers whose sum of divisors equals the sum of their anti-divisors.      


Initial members of this sequence are:
11, 22, 33, 65, 82, 117, 218, 483, 508, 537, 6430, 21541, 117818, 3589646, 7231219, 8515767, 13050345, 47245905, 50414595, 104335023, 217728002, 1217532421, 1573368218, 1875543429, 2269058065, 11902221245, 12196454655, 12658724029
For example, 21541 has anti-divisors 2, 3, 9, 26, 67, 643, 3314, 4787 and 14361 that sum to 23212 and divisors 1, 13, 1657 and 21541 that also sum to 23212.

 
 A241557

Numbers \(k\) that do not have prime anti-divisors.   
  

Initial members of this sequence are:
1, 2, 6, 30, 36, 54, 90, 96, 114, 120, 156, 174, 210, 216, 300, 330, 414, 510, 516, 546, 576, 660, 714, 726, 744, 804, 810, 834, 894, 936, 966, 1014, 1044, 1056, 1134, 1170, 1296, 1344, 1356, 1500, 1560, 1584, 1626, 1650, 1680, 1686, 1734, 1764, 1770, 1836, 1884, 1926, 2010, 2046, 2064
For example, 2064 has anti-divisors 32, 96 and 1376, none of which are prime.


 A073956

Palindromes whose sum of anti-divisors is palindromic.     


Initial members of this sequence are:
1, 2, 3, 4, 5, 6, 8, 9, 242, 252, 323, 434, 727, 4774, 32223, 42024, 43234, 46864, 64946, 70607, 4855584, 4942494, 6125216, 6265626, 149939941, 188737881, 241383142, 389181983, 470212074, 27685458672, 42685658624, 45625352654, 61039793016
For example, the palindrome 46864 has anti-divisors 3, 19, 32, 157, 199, 471, 597, 928, 3232, 4933 and 31243 that sum to 41814 which is also a palindrome.


 A192282

Numbers \(n\) such that \(n\) and \(n+1\) have same sum of anti-divisors
   

Initial members of this sequence are:
1, 8, 17, 120, 717, 729, 957, 8097, 10785, 12057, 35817, 44817, 52863, 58677, 59757, 76759, 95397, 102957, 114117, 119337, 182157, 206097, 215997, 230037, 253977, 263877, 269277, 271797, 295377, 321417, 402657, 435477, 483117, 485637, 510837, 586797, 589317 
For example, 35817 has anti-divisors 2, 5, 6, 14327 and 23878 that sum to 38218. The next number 35818 has anti-divisors 3, 4, 5, 14327 and 23879 that also sum to 38218.


 A242965

Numbers whose anti-divisors are all primes.     


Initial members of this sequence are:
3, 4, 5, 7, 8, 11, 16, 17, 19, 29, 43, 47, 61, 64, 71, 79, 89, 101, 107, 109, 151, 191, 197, 223, 251, 271, 317, 349, 359, 421, 439, 461, 521, 569, 601, 631, 659, 673, 691, 701, 719, 811, 821, 881, 911, 919, 947, 971, 991, 1009, 1024, 1051, 1091, 1109, 1153 
For example, 1153 has anti-divisors 2, 3, 5, 461 and 769, all of which are prime.

That's probably enough anti-divisor related sequences for this post but let's be clear, with the exception of 1 and 2, all integers have:
  • at least two divisors (themselves and 1) e.g. 11 has divisors 11 and 1
  • at least one non-divisor e.g. 11 has non-divisors of 2, 3, 4, 5, 6, 7, 8, 9 and 10
  • at least one non-divisor that is an anti-divisor e.g. 11 has anti-divisors of 2, 3 and 7.
Anti-divisors can be quickly found in SageMath (or Python) using the following code (input is in blue and output is in red, see Figure 7 for screenshot):

from sympy.ntheory.factor_ import antidivisors
n=1134
print(antidivisors(int(n)))

[4, 12, 28, 36, 84, 108, 252, 324, 756] 


Figure 7: permalink

No comments:

Post a Comment