2, 3, 5, 6, 9, 12, 16, 22, 25, 29, 31, 35, 47, 57, 61, 66, 79, 81, 108, 114, 148, 163, 172, 185, 198, 203, 205, 236, 265, 275, 282, 294, 312, 344, 359, 377, 397, 398, 411, 427, 431, 493, 512, 589, 647, 648, 660, 708, 719, 765, 887, 911, 916, 935Figure 1 shows the SageMath algorithm to produce the list which forms part of OEIS A046966:
Figure 1: permalink |
The primes resulting from this multiplication of numbers get large quickly as the following progression shows (OEIS A046972):
2, 3, 7, 31, 181, 1621, 19441, 311041, 6842881, 171072001, 4961088001, 153793728001, 5382780480001, 252990682560001, 14420468905920001, 879648603261120001, 58056807815233920001, 4586487817403479680001Mathematically if S = {2, 3, 5, 6, 9, 12, 16, ... }, then the resulting primes can be represented as \( 1+\displaystyle \prod_{i=1}^n k_i \) where \(k_i \in \) S and \(k_1=2\), \(k_2=3\), \(k_3=5\) etc.
If we impose the condition that only primes will be used to generate primes, then a different set of numbers arise. Here are the first members of the set, made of primes below 1000: 2, 3, 5, 7, 11, 19, 29, 37, 47, 67, 103, 179, 191, 223, 271, 293, 317, 577, 643, 673, 809, 863 and 877. These numbers form a part of OEIS A039726. Figure 2 shows the modified SageMath code used to generate these numbers:
Figure 2: permalink |
Mathematically if T = {2, 3, 5, 7, 11, 19, 29, ... } then the resulting primes can be represented as \( 1+\displaystyle \prod_{i=1}^n p_i \) where \(p_i \in \) T and \(p_1=2\), \(p_2=3\), \(p_3=5\) etc.
Again the primes arising from this multiplication of primes get large quickly (OEIS A087864):
3, 7, 31, 211, 2311, 43891, 1272811, 47093971, 2213416591, 148298911531, 15274787887591, 2734187031878611, 522229723088814511, 116457228248805635731, 31559908855426327282831
These prime generating sequences provide an easy way to get a sequence of very large primes easily. I stumbled upon OEIS A039726 because 25933 is a member of that sequence and 25933 is the number of days old that I am today on my 71st birthday. Here is the full sequence of primes up to and including 25933:
39245917564948194983835869291566473410857839336973406163917903204229432402730189405597557200354010052143063430004924215607042377998480357473041097452582168381147410469490307765855029111404711092751691679691
2, 3, 5, 7, 11, 19, 29, 37, 47, 67, 103, 179, 191, 223, 271, 293, 317, 577, 643, 673, 809, 863, 877, 1049, 1093, 1129, 1151, 1381, 1613, 1637, 2089, 2131, 2311, 2957, 3623, 3833, 4253, 4271, 4423, 4673, 5939, 7717, 8167, 9133, 9533, 9539, 9679, 11059, 11743, 11969, 14759, 15859, 15971, 16139, 17431, 17713, 17761, 19309, 19373, 20747, 20983, 23741, 25261, 25933The prime resulting from multiplying 25933 by all the previous primes in the sequence is:
39245917564948194983835869291566473410857839336973406163917903204229432402730189405597557200354010052143063430004924215607042377998480357473041097452582168381147410469490307765855029111404711092751691679691
No comments:
Post a Comment