Today I'm 25463 days old and I can't let it pass without recording some of its more interesting properties. One of these is that it is a member of OEIS A165572: the greater prime factor of successively better Golden Semiprimes. These semiprimes p*q, starting from 6=2*3, have the property that each successive value of q/p gives a better approximation of the Golden Ratio than the previous term where the
Here are the progressively better approximations as the larger factor of the semiprime is divided by the smaller:
3/2 1.50000000000000
11/7 1.57142857142857
31/19 1.63157894736842
37/23 1.60869565217391
47/29 1.62068965517241
157/97 1.61855670103093
571/353 1.61756373937677
911/563 1.61811722912966
1021/631 1.61806656101426
1487/919 1.61806311207835
2351/1453 1.61803165863730
3571/2207 1.61803352967830
24709/15271 1.61803418243730
25463/15737 1.61803393276991
Another property of 25463, albeit a base dependent one, is its membership in OEIS A156119: primes formed by rearranging five consecutive decimal digits (avoiding leading 0). No primes can be formed from {1,2,3,4,5} or {4,5,6,7,8} since they are divisible by three. Sequence is finite, ending with a(52)=96857. Initial members of sequence are: 10243, 12043, 20143, 20341, 20431, 23041, 24103, 25463.
Yet another property, again base dependent, is its membership of OEIS A124629: primes p such that their cubes are pandigital, meaning all digits from 0 to 9 must appear at least once; here 25463^3=16509301927847. The initial members of this sequence are: 5437, 6221, 7219, 8443, 10903, 11353, 15937, 17123, 18229, 19429, 20353, 20903, 20929, 21803, 21841, 21961, 22123, 22283, 22993, 23053, 23369, 23663, 24733, 25183, 25219, 25463.
Not base dependent is the property that 25463 shares as a member of OEIS A226154: smallest of four consecutive primes whose sum is a triangular number. Triangular numbers are of the form: The initial members of this sequence are: 5, 23, 191, 389, 449, 2593, 3011, 5167, 5639, 5851, 8669, 18839, 25463. Here the four primes add to 101926 = 25463+25469+25471+25523 and this sum is a triangular number because:
Finally and again base independently, 25463 is a member of OEIS A022121: Fibonacci sequence beginning 3, 8. The initial members of this sequence are: 3, 8, 11, 19, 30, 49, 79, 128, 207, 335, 542, 877, 1419, 2296, 3715, 6011, 9726, 15737, 25463.