I came across this problem on a YouTube channel. The problem was purported to be a Harvard University entrance exam question.$$ \text{Simplify } \sqrt{\sqrt{121}-\sqrt{120}}$$Once you see the method, it's easy enough so let's start to simplify:$$
\begin{align}
\sqrt{\sqrt{121}-\sqrt{120}} &= \sqrt{11 - 2 \cdot \sqrt{30}} \\
&= \sqrt{11 - 2 \cdot \sqrt{6} \cdot \sqrt{5}} \\
&= \sqrt{6 - 2 \cdot \sqrt{6} \cdot \sqrt{5} + 5} \\
&= \sqrt{(\sqrt{6})^2 - 2 \cdot \sqrt{6} \cdot \sqrt{5} + (\sqrt{5})^2} \\
&= \sqrt{(\sqrt{6} - \sqrt{5})^2} \\
&= \sqrt{6} - \sqrt{5}
\end{align}
$$Here's another one:$$ \text{Simplify } \sqrt{\sqrt{36}-\sqrt{20}}$$The approach is exactly the same:
$$
\begin{align}
\sqrt{\sqrt{36}-\sqrt{20}} &= \sqrt{6 - 2 \cdot \sqrt{5}} \\
&= \sqrt{6- 2 \cdot \sqrt{5} \cdot \sqrt{1}} \\
&= \sqrt{5 - 2 \cdot \sqrt{5} \cdot \sqrt{1} + 1} \\
&= \sqrt{(\sqrt{5})^2 - 2 \cdot \sqrt{5} \cdot \sqrt{1} + (\sqrt{1})^2} \\
&= \sqrt{(\sqrt{5} - \sqrt{1})^2} \\
&= \sqrt{5} - \sqrt{1}\\
&=\sqrt{5}-1
\end{align}
$$
No comments:
Post a Comment