I'm using the acronym SOD to stand for Sum Of Digits and POD to stand for Product Of Digits. In a blog June 2021 post titled SOD ET AL, I made mention of OEIS A047791:
A047791 | Numbers |
In March of 2024, I made a blog post titled More Sequences Involving SOD and POD in which I looked at semiprimes and sphenic numbers that remain semiprimes and sphenic numbers when their sums of digits and products of digits are added to them. For some reason, I've never looked at numbers that become prime when their sum of digits is added to them and that also become prime when their product of digits is added to them. When considering the product of digits of a number, it's usual to exclude numbers containing a zero because then the product of digits is alway zero. However, the decision can be made to exclude any zero digits in the multiplication.
- \(n\) does not contain the digit 0
- \(n\) + SOD(\(n )\) \( \rightarrow \) a prime number
- \(n\) + POD(\(n )\) \( \rightarrow \) a prime number
- SOD(27887) = 32 and POD(27887) = 6272
- 27887 + 32 = 27919 which is a prime number
- 27887 + 6272 = 34159 which is a prime number
- \(n\) is prime and does not contain the digit 0
- \(n\) + SOD(\(n) \) \( \rightarrow \) a prime number
- \(n\) + POD(\(n) \) \( \rightarrow \) a prime number
If we decide to include numbers containing the digit 0 (but exclude them in the multiplication) then 444 numbers qualify in the range up to 40000. For example, 10 qualifies since SOD(10) = 1 and POD(101) = 1 and 11 is prime. The criteria to be satisfied are thus:
- \(n\) + SOD(\(n) \) \( \rightarrow \) a prime number
- \(n\) + POD(\(n) \) \( \rightarrow \) a prime number with 0 excluded from multiplication
Here are the numbers (permalink):
1, 10, 100, 163, 233, 253, 293, 341, 343, 431, 473, 493, 499, 563, 611, 617, 743, 767, 923, 1241, 1421, 1423, 1483, 1489, 1601, 1603, 1849, 1867, 2053, 2147, 2231, 2233, 2273, 2327, 2369, 2413, 2543, 2569, 2633, 2639, 2783, 2839, 2903, 3170, 3190, 3287, 3449, 3607, 3649, 3661, 3829, 3970, 4121, 4211, 4217, 4273, 4387, 4459, 4529, 4547, 4729, 4903, 4909, 4921, 5063, 5263, 5461, 5627, 5663, 5861, 6037, 6053, 6059, 6073, 6103, 6121, 6127, 6181, 6509, 6527, 6529, 6617, 6637, 6653, 6703, 6743, 6761, 6857, 6949, 7043, 7190, 7223, 7310, 7403, 7429, 7681, 8059, 8273, 8431, 8491, 8569, 8671, 8789, 8837, 8839, 8899, 8983, 9043, 9263, 9310, 9403, 9409, 9641, 9649, 9689, 9869, 9881, 9889, 10061, 10243, 10261, 10421, 10447, 10669, 10843, 10847, 11233, 11237, 11251, 11297, 11341, 11567, 11581, 11611, 11657, 11677, 11897, 11899, 12041, 12061, 12151, 12379, 12401, 12443, 12553, 12557, 12601, 12667, 12797, 12809, 12977, 13163, 13211, 13231, 13321, 13453, 13457, 13523, 13547, 13673, 13697, 13700, 13729, 13837, 13877, 13879, 13891, 13969, 14021, 14041, 14137, 14311, 14353, 14407, 14423, 14429, 14467, 14483, 14533, 14537, 14623, 14641, 14647, 14689, 14807, 14957, 15121, 15167, 15217, 15257, 15277, 15361, 15413, 15451, 15491, 15619, 15721, 15727, 15769, 15781, 15859, 15947, 16067, 16319, 16391, 16427, 16513, 16577, 16799, 16993, 16997, 17183, 17299, 17329, 17837, 17879, 18197, 18203, 18209, 18229, 18287, 18517, 18559, 18751, 19381, 19411, 19457, 19523, 19549, 19583, 19673, 19691, 19700, 19741, 19831, 19859, 20093, 20141, 20273, 20323, 20327, 20369, 20491, 20729, 20923, 20927, 21311, 21379, 21467, 21511, 21577, 21593, 21601, 21737, 21751, 21803, 21977, 21991, 22121, 22123, 22259, 22369, 22387, 22549, 22657, 22703, 22747, 22837, 22921, 22981, 23003, 23083, 23117, 23179, 23269, 23353, 23519, 23573, 23599, 23719, 23731, 23791, 24011, 24077, 24101, 24259, 24343, 24499, 24503, 24527, 24761, 24949, 25003, 25043, 25111, 25153, 25223, 25283, 25319, 25333, 25441, 25517, 25519, 25577, 25681, 25771, 25847, 25913, 25991, 25997, 26093, 26101, 26233, 26251, 26273, 26323, 26611, 26699, 26927, 27043, 27157, 27263, 27317, 27407, 27427, 27511, 27887, 27931, 28181, 28213, 28303, 28853, 28877, 28981, 29113, 29117, 29153, 29171, 29179, 29281, 29357, 29597, 29621, 29731, 29887, 29933, 30130, 30449, 30481, 30487, 31070, 31141, 31213, 31217, 31493, 31613, 31651, 31697, 31789, 31837, 31853, 31879, 32111, 32173, 32281, 32357, 32447, 32539, 32687, 32689, 32957, 32971, 33383, 33413, 33527, 33547, 33581, 33587, 33769, 33851, 34247, 34313, 34339, 34409, 34463, 34577, 34609, 34667, 34681, 34793, 34861, 35143, 35251, 35257, 35323, 35417, 35521, 35569, 35699, 35783, 35831, 35873, 35981, 36023, 36047, 36229, 36287, 36469, 36559, 36607, 36661, 36919, 36953, 36991, 37070, 37300, 37321, 37369, 37547, 37613, 37637, 37700, 37871, 38023, 38221, 38351, 38683, 38689, 38719, 38801, 38807, 38887, 38939, 38951, 38959, 39161, 39361, 39493, 39521, 39587, 39653, 39691, 39943, 39947
If the initial number is required to be prime, then only 170 numbers satisfy the following criteria:
- \(n\) is prime
- \(n\) + SOD(\(n) \) \( \rightarrow \) a prime number
- \(n\) + POD(\(n) \) \( \rightarrow \) a prime number with 0 excluded from multiplication
No comments:
Post a Comment