Sunday 6 August 2023

Hidden Beast Numbers

The number associated with my diurnal age today, 27153, gave me the idea for what I'm terming "hidden beast numbers". This number factorises to 3 x 3 x 7 x 431 and its sum of prime factors, with multiplicity, is 444. This prompted with to find all numbers whose sum of prime factors have identical digits. This sequence does not appear in the OEIS but I added it to my Bespoken for Sequences.

However, in this post I'm only interested those numbers whose sum of prime factors is 666, the so-called "number of the beast". Obviously in numbers like 27666, the three sixes are scarcely hidden but in a number like: $$ 998515 = 5 \times 7 \times 47 \times 607$$ the three sixes are not so obvious. It is only when add the 5, 7, 47 and 607 together that find the 666.

The 248 numbers (excluding numbers whose sum is a single digit) with this property are as follows (permalink) up to one million:

3305, 3966, 4613, 6590, 7908, 8489, 12293, 14366, 14789, 21998, 29093, 29486, 32489, 35813, 36568, 40133, 41139, 43289, 46373, 48868, 48975, 51353, 52240, 55193, 57989, 57998, 58770, 60713, 62688, 67288, 70524, 75699, 78244, 79913, 81989, 83333, 84206, 87173, 87448, 92933, 97432, 98379, 98789, 99653, 100889, 105113, 106468, 106755, 106793, 107753, 108389, 109289, 109611, 110213, 110489, 110633, 113726, 113872, 119198, 128106, 146392, 146644, 158515, 163455, 164691, 169886, 174352, 175539, 183998, 190218, 196146, 200846, 203032, 208975, 210926, 212248, 215246, 219566, 219998, 226450, 228411, 230488, 232683, 238779, 247555, 250770, 257368, 259299, 267488, 271740, 283672, 289539, 289856, 290788, 291655, 292312, 297066, 300924, 317848, 319131, 323500, 325348, 326088, 328851, 342808, 345499, 349986, 353650, 357579, 366849, 368548, 379455, 383128, 385659, 388200, 391588, 396628, 404752, 405844, 406552, 414080, 416650, 424380, 429028, 431019, 436725, 436888, 436948, 438244, 441098, 452672, 455346, 457371, 458968, 465840, 467571, 480963, 491499, 493570, 494488, 496896, 499980, 507955, 509256, 516339, 524070, 530115, 533312, 553539, 556299, 559008, 565456, 572575, 572913, 573208, 579352, 592284, 599976, 609546, 614872, 625155, 628884, 630140, 631768, 636138, 644859, 651771, 658975, 659395, 666832, 674008, 674973, 687090, 691731, 693592, 697255, 705100, 710739, 721048, 725650, 729688, 732896, 733912, 748371, 750186, 756168, 757912, 758259, 759615, 780291, 786328, 789592, 790770, 791274, 799015, 804952, 807832, 810256, 811179, 820899, 821272, 824508, 825651, 825979, 835288, 836706, 843352, 843488, 843855, 846120, 848728, 850689, 851992, 852651, 860248, 866968, 868312, 868888, 870780, 879452, 879655, 884559, 884619, 888291, 900112, 900200, 902528, 905571, 908811, 911538, 912543, 923931, 928832, 939699, 948771, 948924, 951885, 954819, 957243, 958491, 958818, 967779, 975339, 976851, 977499, 979179, 992563, 998515

Looking through this list we see that is only number that contains, overtly, the sequence 666. The number is: $$ 666832 = 2 \times 2 \times 2 \times  2 \times 71 \times 587 $$So this number is rather special in that it contains both on overt and covert 666 sequence. Of course, if we consider only distinct prime factors, ignoring multiplicity, we get a different list with only 192 members and with some numbers in common between the two lists. Permalink.

3305, 3966, 4613, 6590, 7932, 8489, 11898, 12293, 13180, 14366, 14789, 15864, 16525, 21998, 23796, 26360, 28732, 29093, 29486, 31728, 32291, 32489, 32950, 35694, 35813, 40133, 43289, 43996, 46373, 47592, 51353, 52720, 55193, 57464, 57989, 57998, 58972, 60713, 63456, 65900, 71388, 79913, 81989, 82625, 83333, 84206, 87173, 87992, 92933, 95184, 98789, 99653, 100889, 105113, 105440, 106755, 106793, 107082, 107753, 108389, 109289, 110213, 110357, 110489, 110633, 113726, 114928, 115996, 117944, 119198, 126912, 131800, 142776, 158026, 163455, 164750, 168412, 169886, 175539, 175984, 183998, 190368, 200846, 210880, 210926, 214164, 215246, 219566, 219998, 226037, 227452, 229856, 231992, 233567, 235888, 238396, 247555, 250770, 253824, 263600, 285552, 291655, 297066, 316052, 320265, 321246, 329500, 336824, 339772, 340147, 349986, 351968, 367996, 373966, 379455, 380736, 401692, 413125, 421760, 421852, 428328, 430492, 439132, 439996, 454904, 459712, 463984, 467571, 471776, 476792, 480963, 490365, 493570, 501540, 507648, 507955, 526617, 527200, 530115, 533775, 553539, 571104, 594132, 609546, 625155, 632104, 642492, 659000, 659395, 673648, 678178, 679544, 687090, 697255, 699972, 703936, 735992, 747932, 748371, 752310, 759615, 761472, 790770, 791274, 799015, 803384, 817275, 823750, 825979, 836706, 843520, 843704, 843855, 856656, 860984, 878264, 879655, 879992, 884559, 891198, 909808, 912543, 919424, 927968, 943552, 953584, 957243, 958818, 960795, 963738, 987140, 998515

Looking through the list, the first new number to appear is 11898 with the property that: $$ 11898 = 2 \times 3 \times 3 \times 661$$In this number, we ignore the second 3 and thus the sum is 2 + 3 + 661 = 666. 

No comments:

Post a Comment