Friday 2 March 2018

The Gaussian Correlation Inequality (GCI)

As he was brushing his teeth on the morning of July 17, 2014, Thomas Royen, a little-known retired German statistician, suddenly lit upon the proof of a famous conjecture at the intersection of geometry, probability theory and statistics that had eluded top experts for decades.
 Thus begins a most interesting article I came across in Quanta Magazine. The article continues:
Known as the Gaussian correlation inequality (GCI), the conjecture originated in the 1950s, was posed in its most elegant form in 1972 and has held mathematicians in its thrall ever since. “I know of people who worked on it for 40 years,” said Donald Richards, a statistician at Pennsylvania State University. “I myself worked on it for 30 years.” 
Royen hadn’t given the Gaussian correlation inequality much thought before the “raw idea” for how to prove it came to him over the bathroom sink. Formerly an employee of a pharmaceutical company, he had moved on to a small technical university in Bingen, Germany, in 1985 in order to have more time to improve the statistical formulas that he and other industry statisticians used to make sense of drug-trial data. In July 2014, still at work on his formulas as a 67-year-old retiree, Royen found that the GCI could be extended into a statement about statistical distributions he had long specialised in. On the morning of the 17th, he saw how to calculate a key derivative for this extended GCI that unlocked the proof. “The evening of this day, my first draft of the proof was written,” he said. 
Not knowing LaTeX, the word processor of choice in mathematics, he typed up his calculations in Microsoft Word, and the following month he posted his paper to the academic preprint site arxiv.org. He also sent it to Richards, who had briefly circulated his own failed attempt at a proof of the GCI a year and a half earlier. “I got this article by email from him,” Richards said. “And when I looked at it I knew instantly that it was solved.” 
Upon seeing the proof, “I really kicked myself,” Richards said. Over the decades, he and other experts had been attacking the GCI with increasingly sophisticated mathematical methods, certain that bold new ideas in convex geometry, probability theory or analysis would be needed to prove it. Some mathematicians, after years of toiling in vain, had come to suspect the inequality was actually false. In the end, though, Royen’s proof was short and simple, filling just a few pages and using only classic techniques. Richards was shocked that he and everyone else had missed it. “But on the other hand I have to also tell you that when I saw it, it was with relief,” he said. “I remember thinking to myself that I was glad to have seen it before I died.” He laughed. “Really, I was so glad I saw it.”
Here is the diagram that accompanies the article:


Interesting story. I won't include the full text of the article here but I'll quote from near its end:
Royen represented the amount of correlation between variables in his generalised GCI by a factor we might call C, and he defined a new function whose value depends on C. When C = 0 (corresponding to independent variables like weight and eye colour), the function equals the product of the separate probabilities. When you crank up the correlation to the maximum, C = 1, the function equals the joint probability. To prove that the latter is bigger than the former and the GCI is true, Royen needed to show that his function always increases as C increases. And it does so if its derivative, or rate of change, with respect to C is always positive. 
His familiarity with gamma distributions sparked his bathroom-sink epiphany. He knew he could apply a classic trick to transform his function into a simpler function. Suddenly, he recognised that the derivative of this transformed function was equivalent to the transform of the derivative of the original function. He could easily show that the latter derivative was always positive, proving the GCI. “He had formulas that enabled him to pull off his magic,” Pitt said. “And I didn’t have the formulas. 
Any graduate student in statistics could follow the arguments, experts say. Royen said he hopes the “surprisingly simple proof … might encourage young students to use their own creativity to find new mathematical theorems,” since “a very high theoretical level is not always required.”
I could have helped him with his LaTeX if he'd asked. Anyway, it's good to see an old timer like Thomas Royen making a significant contribution to Mathematics.

No comments:

Post a Comment